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FIPER: An Intelligent System for the Optimal Design of Highly Engineered Products

Michael W. Bailey, GE Aircraft Engines, Cincinnati, OH 45215
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Abstract

This paper outlines the development of an advanced
design environment that invokes a new intelligent system
paradigm for the design of highly engineered products. The
paradigm of the CAD Master Model (MM) is extended with
the introduction of the Intelligent Master Model (IMM). The
use of knowledge based engineering tools captures why and
how of the design in addition to the what.

Turbine engine development is a highly coupled
disciplinary process. With ever increasing demands in life
cycle costs, environmental aspects (noise, emissions and
fuel consumption) and performance, the availability of
accurate analytical tools during the design process is a
given and ceases to be a discriminator between competitors.
The application of these tools and their automated
interaction in a robust computational environment may
determine the success or failure of a project by reducing
design cycle time and avoiding costly rework.

This paper describes pilot projects at GE Aircraft
Engines (GEAE) and the productivity metrics that justified
broader implementation within GEAE. Developed using the
UniGraphics CAD system for the design of aircraft engines,
this system is applicable to any highly engineered product.
This approach will, with the support of a four year $21.5M
NIST ATP (National Institute of Standards and Technology
Advanced Technology Program), be generalized in FIPER
(Federated Intelligent Product EnviRonment), a web based
environment that will support multi-disciplinary design and
optimization.

The Problem

The development of robust and optimal, highly
engineered products and processes in today’s environment
of step-function reductions in cycle time, cost take-out, and
improved performance seriously tax the capabilities of
today’s design systems. Further exacerbating the problem is
the need to improve and control quality, for both internally
manufactured parts and materials and parts produced
through supply chains. Since products are now designed,
manufactured and serviced at geographically disparate
locations, the ability to share relevant product data is critical.

The Solution

FIPER presents a solution in the form of an Integrated
Multidisciplinary Design System which
• Exploits the concept of the IMM, permitting context

specific views of the MM

• Seamlessly integrates relevant technologies to enable
rapid instantiation and simulation-based evaluation of
products and processes

Vision: Integrated Multidisciplinary Design Environment

The integrated multidisciplinary design environment
under development will enable users to define process maps
and rapidly integrate their own proprietary product-specific
design and simulation tools through visual programming
techniques. It will automatically provide access to a set of
technologies including CAD systems and low and high
fidelity analysis modules, as well as Multidisciplinary
Optimization (MDO) and Robust Design technologies. It will
exploit Knowledge Based Engineering to capture rules and
best practices that can drive product definition through the
(IMM)

Intelligent Master Model

The Intelligent Master Model (Figure 1) is a major
enhancement to the Master Modeling concept. Knowledge
Based Engineering (KBE) is fused with Product Control
Structure (PCS), conventional MM and Linked Model
Environment (LME) to collectively render it an Intelligent
Master Model. The IMM captures the intent behind the
product design by representing the why and how, in
addition to the what of a design. The geometric description
is only one view of the information associated with the total
product model. The IMM can also contain part
dependencies, geometric and non-geometric attributes,
manufacturing producibility and cost constraints. IMM can
provide access to external databases, and can be integrated
with proprietary and  commercial  codes  through  the  LME.

The  IMM  can
Figure 1. Intelligent Master Model
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capture and archive corporate design practices as well as
design and manufacturing engineering expertise. This
knowledge can enable less experienced engineers to
consistently produce correct first time designs.

The IMM captures the process for generating the PCS
at the conceptual and preliminary design level, which then
flows the critical information to the detail design and
manufacturing. The IMM uses its knowledge base to enable
parametric scaling of designs in a top down fashion. When
parameters must be computed by execution of  simulation
codes, the IMM manages this execution by working  with
process integration tools.

The Master Model

The Master Model captures the requisite information,
geometric and non-geometric, to enable context-specific
views of necessary design, manufacture, test, and service
data. A product design system that supports early
requirements definition and flow-down demands that the
underlying representation be flexible to geometric, attribute,
feature and knowledge-based changes. The traditional CAD
representation is flexible only in a geometric sense.

The Master Model (Figure 2) at the lowest or geometric
level consists of parametric geometry features such as
primitives, extrusions, holes, etc., which form the basic
product description. Parameters associated with these
geometric features are a subset of the key characteristics
which are manipulated to define the product. At this level,
the key characteristics include the traditional concepts of
dimensionality (length, radius, angle, etc.), as well as those
concepts that follow from knowledge-based solid modeling
such as offset, spatial alignment, and perpendicularity
constraints. Additionally, the existence of a feature is itself
an attribute which may be turned on or off as needed to
represent the part to varying fidelity levels. For example a
bolthole is typically present during a stress analysis but
omitted during a computational fluid dynamics analysis. This
simplification would be part of the context model, thus
creating a context-specific view of the geometry using
feature suppression.

Figure 2. The Master Model supports Feature based
Modeling

Figure 3. Feature Based Modeling

Using parametric feature-based technology, models are
constructed by initially creating simple parametric block
shapes to which features (e.g. flanges) are attached.
Compound blends are then created and added to the model
together with standard features such as radii and chamfers,
to create the axisymetric solid. Finally, non-axisymetric
features such as holes and slots are then added as shown in
Figure 3. This feature-based approach is consistent with
feature based analytical model building and cost estimating,
while also providing feature suppression functionality.

The initial approach to KBE was the encapsulation of
product rules within UniGraphics XESS spreadsheets. These
spreadsheets are linked to the geometry such that design
rules and practices are parameterized to drive geometry.
External codes such as those for disk design could also be
executed. Thus an increase in flow thorough the compressor
would initiate an aerodynamic resizing of blades and vanes
resulting in a blade platform and attachment resizing
combined with a disk redesign due to increased centrifugal
loads. The whole compressor would thus “rubber band” or
parametrically expand to accommodate increased flow.

The Product Control Structure

The PCS facilitates top-down control of the design,
allowing the engineer to layout the system configuration and
control changes in a top-down fashion. It facilitates what-if
analysis at the conceptual, preliminary, and detailed design
levels by allowing the designer to make parametric changes
or to evaluate alternate configurations. This encourages
design reuse and enforces standardization in the design
process.

The PCS is a hierarchical decomposition of the product
into its systems, subsystems and components (Figure 4).
These are represented by high-level product attributes and
key datum planes and axes to capture their spatial location
and orientation. Once the top-level datums have been
established and referenced by the subsystems, each
subsystem can be designed independently in a distributed
manner and later be automatically assembled. Within the
PCS, components may be represented by preliminary,
simplified geometry (e.g., 2-D cross-sections) or just datums.
The cross-sections are picked from a library of cross-section
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types based on rules. The values for the parameters that
define a cross-section are determined using
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Figure 4. Product Control Structure

Figure 5. Linked Model Environment

rules captured in the knowledge base. The leaf nodes of the
PCS become the seed parts for the bottom-up design of the
product into a 3-D assembly. The parts contain 3-D features
to capture additional design and manufacturing intent.
Everything is fully associative, and thus all changes to the
PCS propagate throughout the model.

The Linked Model Environment

Disciplines such as stress analysis, heat transfer analysis,
fluids or combustion analysis, and manufacturing and cost

prediction each use their own abstraction of the physical
model of the product. Within one discipline, several context-
specific views may exist as the design evolves. For example,
2-D axisymmetric stress analysis models and detailed 3-D
stress analysis models of various levels of refinement for the
individual components of a jet engine are required. Each of
these analysis models is associated with one or more
simulation tools or codes, from simple response surfaces or
performance maps during the conceptual design phase, to
more complex analysis codes for detailed design,
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manufacturing process simulation, and cost modeling. This
provides  the promise  of  geometric  zooming.  Historically,
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Figure 6. The Simulation Engine

these models exist in a heterogeneous environment, without
explicit connections between them. Thus, a design change
demanded by one disciplinary group has to be manually
incorporated into all the various models of the product that
co-exist; a process that is both tedious and error prone.
Within the LME (Figure 5) a product’s analysis and process
models are linked to the Master Model so that all models are
automatically synchronized to a single Master Model. Thus,
a process is established by which design changes caused by
one discipline are fed back to the Master Model. A Product
Data Management (PDM) system tracks the design revisions
and the associated analysis views or context models of the
product.

Simulation Engine

An integral part of the LME is the simulation engine
where the analysis tools themselves are wrapped for ease of
reuse in a plug-and-pay architecture. To achieve robust and
optimal designs, iterative analysis is required. Therefore,
ready access to the requisite analysis codes and process
maps is essential. The Simulation Engine (Figure 6) provides:
• a programmable mechanism to specify and control the

execution of the analysis process
• a mechanism to enable users to easily wrap codes
• an ensemble of pre-wrapped multidisciplinary, variable-

fidelity, product-specific analysis tools
• Individual codes and process maps to be linked to
the IMM for either manual or automatic execution under
program control.
The NASA Glenn Research Center’s Numerical Propulsion
System Simulator (NPSS) has used a similar cube

representation to show the interconnectivity of functional
codes, multiple levels of analysis, and zooming to represent
their computer-based engine in a test cell. The Simulation
Engine is a generalization of this concept for generic
products.

Design For Six Sigma

The goal of Design For Six Sigma (DFSS, 3.4 defects per
million opportunities) is to create products and processes
which are at Six Sigma levels of performance,
manufacturability, reliability and cost. DFSS is based on an
orderly process which identifies and flows down Critical to
Quality (CTQ) characteristics for the product, process or
service. This enables quality measures to be driven into the
product during the early design phases where the cost of
implementing changes is relatively low in comparison to
fixing the problems later in the product life cycle. Key design
factors for each CTQ are identified and statistical
performance models are developed. Modeling, simulation,
Design of Experiments (DoE) and analysis are usually
employed to develop the statistical models. The essence of
DFSS is to migrate from a deterministic to a probabilistic
design approach. DFSS is generally focused on shifting
means for  CTQ’s and reducing  variances about means so
that customer expectations are met at minimum cost.

Robust Design is an intrinsic part of DFSS. Traditionally
optimal design and robust design were viewed as
independent technologies, but in fact there is great
synergism and common core concepts that can be exploited
to achieve
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Figure 7. The True Meaning of DFSS

optimal and robust designs for products and processes.
Optimality and robustness often have competing objectives.
The focus of the robust optimization problem is to
simultaneously optimize the performance (mean of the
response) and minimize the variation. In other words, a
maximization problem would not merely strive for the highest
peak, but would strive for a high plateau. In practice this
represents a trade-off between Performance and Technical
Requirements, Reliability and Producibility (Figure 6). This
represents a paradigm shift in design methodology.

Background

There are many definitions of a Master Model. At GEAE the
definition is a single geometric representation, ideally 3-D,
created at concept using feature based parametric modeling
techniques in a linked associative environment, and utilized
through manufacturing. In addition there is an evolution of a
tight integration of all elements of a product creation,
manufacturing and support permitting true concurrency for
analysis and manufacturing since updates can be flowed
down to the individual activities from the MM. An additional
requirement is the management of all types of data or
metadata within the Common Geometry environment. The
fusion of a conventional MM with PCS, LME and KBE
results in an IMM, the next logical step in CAD’s evolution.

Historically analysis codes were coupled together with
input and output files; geometry was provided as an output
as necessary, probably as an IGES file. The new approach is
to have geometry central or common to all processes and to
use it as a design integrator. This facilitates CAD integration
with analysis and manufacturing. Four years ago GE Aircraft

Engines started its Common Geometry initiative, based on
UniGraphics and commercial code to the extent possible. The
first year focused on strategy. Historically at GEAE
conceptual and preliminary design are accomplished using
simplifying assumptions in a unique set of tools. Changes in
the underlying assumptions and the lack of a rigorous
handoff to detail design often meant that the preliminary
design was repeated. Since business commitments are made
based on preliminary design this increased the risk of
meeting customer CTQ requirements. It is well understood
that 70 to 80% of a product’s cost is locked in during
conceptual and preliminary design. Previous efforts had
focused on productivity tools that relied heavily on
automation. The discovery of UG/WAVE with its top down
approach using a Control Structure meant it was possible to
drive the design using requirements providing functional
and spatial integration thereby making it possible to create
3-D solid models at the Conceptual/Preliminary Design
Phase. This combined with a tight integration of CAD with
analysis and manufacturing in LME would provide a truly
concurrent design environment.

During the second year three pilots were conducted to
demonstrate the technical feasibility and generate metrics for
the return on investment analysis necessary to move to a
broader implementation across the business. These pilots
focused on Conceptual/Preliminary design, Detailed design
and Manufacturing. Although these pilots addressed
different sections of the engine, success in individual areas
would provide confidence to proceed to a broader
implementation.

Integration
and

Optimization

FIPER Role 
Performance

& 
Technical

Requirements

Reliability Producibility

DFSS
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Figure 8. LME Engineering Pilot

SOLID Pilot

The purpose of the SOLID (System Oriented Layout
with Integrated Design) pilot was to build a 3-D solid
geometry model of a compressor. This was constructed
using the UG/WAVE PCS. Model construction is of
paramount importance if productivity gains downstream are
to be realized. Constructing the model from features enables
suppression of selective features by downstream users
using context models or “views of geometry”. Traditional 2-
D axisymetric cross sections can still be generated from the
3-D solid. These would be completely associative to the
solid and would constitute an output instead of an input.
Thus the
parameters that drive the 3-D solid would also drive the 2-D
cross section. Time invested in constructing the 3-D models
facilitates updates as the design evolves. By segregating out
the work that would be eliminated using the SOLID model
from the charging data from a recently completed program, it
was estimated that 34% would be saved at the
Conceptual/Preliminary design phase and 7% at the Detailed
Design phase.

A key element in the Integration of CAD with Analysis,
or any geometry dependent activity, is the creation of
context models. A Context model uses the concept of CAD
Assemblies to create a “view” of geometry. Just as it is
conventional CAD practice to combine parts into assemblies
building up into the complete system, it is possible to
combine geometry with context information in the form of an
assembly. Context in this application means the attachment
of information necessary to create a structural, thermal or
Computational Fluid Dynamics (CFD) model to geometric
entities. The rotor assembly could also be regarded as a
context model. This information could be boundary
conditions such as pressures, temperatures, loads and the
meshing strategy such as mesh seeds or mesh densities.
These attributes are applied to the geometric entities in the
CAD package.

This context information or “Tagging” should be robust
to parametric or non-topological changes and have some
robustness to topological changes. A longer term goal is to
apply these “Tags” as the analysis model is built in the
meshing software, then export these to the CAD software for
storage. Currently they are applied in the CAD software. The
CAD assembly context model is imported into the meshing
software such as PATRAN, ANSYS or ICEM CFD to create
the application model. The heat transfer context model is
shown in Figure 8. From data accumulated during the pilot, it
was estimated that savings of 25% in Detailed Design were
possible.

In the manufacturing pilot the focus was using
manufacturing context models in conjunction with the 3-D
Master Model to generate in process planning and shapes,
tooling and Computer Numerically Controlled (CNC)
machining tapes. A Low Pressure turbine disk currently in
production was used. Note that in the manufacturing
environment the modeling works in the opposite sense to
detail design. In the detailed design features are added to the
model as the design progresses from conceptual through
preliminary and detail design; in manufacturing features are
removed consistent with manufacturing operations until the
raw material remains. Figure 9 shows the associated in-
process models and tooling together with the engineering
analysis, results and drawing creation. The pilot
demonstrated a 15% reduction in process development time
and an 80% reduction in process regeneration for parametric
changes. In addition the associated tooling was updated
when the model was changed.

Computer Measuring Machine (CMM) inspection
programs can also be generated from the process models.
This is another key context model use of  the linked
associative environment. Aircraft engine manufacture
involves the machining of complex shapes from high
temperature alloys that “move” during the manufacturing
process. Thus it is important for process control to inspect
the process shapes to know what the dimensions are so

Heat Transfer Context Model

Turbine Rotor Assembly
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adjustments can be made to future machining operations.
This offers the possibility of a “real time” machining

feedback loop.

Figure 9. LME Manufacturing Pilot

Figure 10. Incremental Approach to Development and Deployment

Productivity
tools

e-PDM

e-Visualization

e-Engineering

• Product Data Management
• Web  Enabled
• Engineering Management
• Manufacturing Management
• Supply Chain Management
• Services Management• Network Enabled

• Automating Serial
Processes

• Part Specific
• Bottom-Up

• PDM Plus
• Visual collaborative environment
• Incorporates Digital Mockup
• Spatial Integration & Analysis

• Visualization Plus
• Federated Intelligent Product

EnviRonment (FIPER)
• Top-Down
• Functional Integration & Analysis

Tools Strategy
Fully Deployed
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Incremental Approach to Development and Deployment

GEAE’s incremental approach to development and
deployment is shown in Figure 10.
Productivity Tools/Common Geometry was network enabled
and automated serial tasks such as mesh creation on
individual parts. This can be described as the “run faster”
approach and is sub-optimal since it optimizes individual

parts in bottom-up design as opposed to the system design.
e-PDM focuses on Product Data Management (PDM) and is
Web enabled. PDM typically provides Engineering

Management, Manufacturing Management, Supply Chain
Management and Services Management with databases,
parts lists, process flow, etc. It would provide the
infrastructure for subsequent development.
e-Visualization represents an enhancement of e-PDM in that
it provides a visual collaborative environment incorporating
a digital mockup. It thus provides a visual representation of
the engineering assembly permitting spatial integration and

is with functionality such as interference clearance and
removal envelope assessment.

Figure 11. Federated Integrated Design EnviRonment

e-Engineering builds on the benefits of e-PDM and e-
Visualization to provide an environment that supports
functional integration and analysis providing a top-down or
”run smarter” design environment.

The recent FIPER project award by NIST ATP will
provide such an environment. Drawing on the experience
and qualifications of the FIPER team members and
leveraging GE’s Corporate commitment to Design For Six
Sigma methodology and products, the proposed program
will result in the development, demonstration and transition
of advanced tools and technology. Key elements of the
NIST ATP include:
• Development of an extensible, standards-based plug

and play, Web-based architecture to enable the creation
of Six Sigma products and processes.

• Development and major enhancement of a set of
advanced core technologies necessary to realize Design
For Six Sigma, most notably Intelligent Master
Modeling, Knowledge Based Engineering, Robust
Design, Multidisciplinary Design and Optimization, Cost
Modeling and Producibility.

• Demonstration of FIPER on a diverse set of demanding
applications, which span conceptual design, through

manufacturing for systems, subsystems and
components.

• Dissemination of the technology through a well
founded commercialization plan, complimentary teaming,
Web-based access, publications, educational programs
and the creation of an early adoption program.

Thus FIPER represents a paradigm shift for product
development through the introduction of a standards based
product development environment Conceptually the FIPER
environment is described in Figure 11 and in more detail in
Reference1.

The team was chosen for their complimentary roles in
achieving the overall FIPER objectives. GEAE is a complex
engineering system developer and manufacturer and a
Unigraphics CAD system user. Parker Hannifin is a complex
aircraft engine and aircraft subsystem and component
supplier  and  a  ProEngineer CAD system user.
BFGoodrichAerospace is a complex  aircraft  sub-system
and  component  supplier and CATIA CAD system user.
Thus with CAD interoperability being one of the major
FIPER initiatives, three out of the four major CAD systems is
represented. The fourth, SDRC IDEAS Master Series will be
addressed at a later stage, possibly through the early
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adopter program. GE Corporate Research and Development
(CR&D) has been developing the technology associated
with IMM, KBE, MDO and DFSS for a number of years.
Engineous Software Inc. is the commercializer for the FIPER
software and their current product is iSIGHT, an engineering
analysis process integration and optimization tool. Ohio
University is providing computer system integration
software wrapping tools and is developing a cost model that
will be integrated with the IMM. Stanford University is
creating producibility models that will be integrated with the
IMM. OAI (Ohio Aerospace Institute) is the sponsoring
organization and provides program administration. The
complimentary teaming are key to the technical and
commercial success of the FIPER project.
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ABSTRACT

This paper is a first step to formal comparisons of several
leading optimization algorithms, establishing guidance to
practitioners for when to use or not use a particular method.
The focus in this paper is four general algorithm forms:
random search, simultaneous perturbation stochastic
approximation, simulated annealing, and evolutionary
computation.  We summarize the available theoretical results
on rates of convergence for the four algorithm forms and then
use the theoretical results to draw some preliminary
conclusions on the relative efficiency.  Our aim is to sort out
some of the competing claims of efficiency and to suggest a
structure for comparison that is more general and transferable
than the usual problem-specific numerical studies.  Work
remains to be done to generalize and extend the results to
problems and algorithms of the type frequently seen in
practice.

KEYWORDS: Rate of convergence; random search;
simultaneous perturbation stochastic approximation;
simulated annealing; evolutionary computation.

1. INTRODUCTION

To address the shortcomings of classical deterministic
algorithms, a number of powerful optimization algorithms with
embedded randomness have been developed.  The
population-based methods of evolutionary computation are
only one class among many of these available stochastic
optimization algorithms.  Hence, a user facing a challenging
optimization problem for which a stochastic optimization
method is appropriate meets the daunting task of determining
which algorithm is appropriate for a given problem.  This
choice is made more difficult by the large amount of “hype”
and dubious claims that are associated with some popular

algorithms.  An inappropriate approach may lead to a large
waste of resources, both from the view of wasted efforts in
implementation and from the view of the resulting suboptimal
solution to the optimization problem of interest.
Hence, there is a need for objective analysis of the relative
merits and shortcomings of leading approaches to stochastic
optimization.  This need has certainly been recognized by
others, as illustrated in the recent 1998 IEEE International
Conference on Evolutionary Computation, where one of the
major subject divisions in the conference was devoted to
comparing algorithms.  Nevertheless, virtually all comparisons
have been numerical tests on specific problems.  Although
sometimes enlightening, such comparisons are severely
limited in the general insight they provide.  On the other end
of the spectrum are the “No Free Lunch Theorems” (Wolpert
and McReady, 1997), which simultaneously considers all
possible loss functions and thereby draw conclusions that
have limited practical utility since one always has at least
some knowledge of the nature of the loss function being
minimized.

Our aim in this paper is to lay a framework for a
theoretical comparison of efficiency applicable to a broad
class of practical problems where some (incomplete)
knowledge is available about the nature of the loss function.
We will consider four basic algorithm forms—random search,
simultaneous perturbation stochastic approximation (SPSA),
simulated annealing, and evolutionary computation via
genetic algorithms—in the context of continuous variable
optimization.  The basic optimization problem corresponds to
finding an optimal point θ*:

θ* = )(minarg θ
∈θ

L
D

,



where L(θ) is the loss function to be minimized, D is the
domain over which the search will occur, and θ is a p-
dimensional (say) vector of parameters.  We are mainly
interested in the typical case where θ* is a unique global
minimum.

Although many stochastic optimization algorithms other
than the four above exist, we are restricting ourselves to the
four general forms in order to be able to make tangible
progress (note that there are various specific implementations
of each of these general algorithm forms).  These four
algorithms are general-purpose optimizers with powerful
capabilities for serious multivariate optimization problems.
Further, they have in common the requirement that they only
need measurements of the objective function, not requiring
the gradient or Hessian of the loss function.

2. NO FREE LUNCH THEOREMS AND
THEIR RELATIONSHIP TO RATE OF
CONVERGENCE

Wolpert and Macready (1997) present a formal analysis of
search algorithms for optimization, the most popular of which
are evolutionary computation, simulated annealing (SAN) and
random search.  This work results in several “No Free Lunch
Theorems,” stating, in essence, that no algorithm is
universally better than other algorithms.  The full version of
this paper goes into some detail on the implications of these
theorems.

 3. SIMPLE GLOBAL RANDOM SEARCH

We first establish a rate of convergence result for the simplest
random search method where we repeatedly sample over the

domain of interest, D ⊆ pR .  This can be done in recursive
form or in “batch” (non-recursive) form by simply laying
down a number of points in D and taking as our estimate of θ*

that value of θ yielding the lowest L value.  It is well known
that the random search algorithm above will converge in some
stochastic sense under modest conditions (e.g., Solis and
Wets, 1981; Spall, 2000b):

To evaluate the rate of convergence, let us specify a
“satisfactory region” S(θ*) representing some neighborhood
of θ* providing acceptable accuracy in our solution (e.g., S(θ*)
might represent a hypercube about θ* with the length of each
side representing a tolerable error in each coordinate of θ).
An expression related to the rate of convergence of Algorithm
A is then given by

         P( kθ̂ ∈S(θ*)) = 1 − [1 − P(θnew(k) ∈ S(θ*)]k           (3.1)

We will use this expression in Section 7 to derive a
convenient formula for comparison of efficiency with other
algorithms.

4. SIMULTANEOUS PERTURBATION
STOCHASTIC APPROXIMATION

The next algorithm we consider is SPSA.  This algorithm is
designed for continuous variable optimization problems.
Unlike the other algorithms here, SPSA is fundamentally
oriented to the case of noisy function measurements and most
of the theory is in that framework.  This will make for a
difficult comparison with the other algorithms, but Section 7
will attempt a comparison nonetheless. The SPSA algorithm
works by iterating from an initial guess of the optimal θ, where
the iteration process depends on a highly efficient
"simultaneous perturbation" approximation to the gradient
g(θ) ≡ ∂L(θ)/∂θ .

The SPSA procedure is in the general recursive SA form:

                         )ˆ(ˆˆˆ
1 kkkkk ga θ−θ=θ +                        (4.1)

where )ˆ(ˆ kkg θ  is the SP estimate of the gradient g(θ) ≡

∂L/∂θ at the iterate kθ̂  (Spall, 1992) based on the

measurements of the loss function and ak > 0 is a “gain”
sequence.  This iterate can be shown to converge under
reasonable conditions (e.g., Spall, 1992; Dippon and Renz,
1997). The essential basis for efficiency of SPSA in
multivariate problems is due to the gradient approximation,
which uses only two measurements of the loss function to
estimate the p-dimensional gradient vector for any p.  This
contrasts with the standard finite difference method of
gradient approximation, which requires 2p measurements.

Most relevant to the comparative analysis goals of this
paper is the asymptotic distribution of the iterate.  This was
derived in Spall (1992), with further developments in Chin
(1997), Dippon and Renz (1997), and Spall (2000a).
Essentially, it is known that under appropriate conditions,

          kβ/2( kθ̂ − θ*)  →dist
N(µ, Σ)  as k  ?  ∞ ,         (4.2)

where β > 0 depends on the choice of gain sequences (ak and
ck), µ depends on both the Hessian and the third derivatives
of L(θ) at θ* (note that in general, µ ≠ 0 in contrast to many
well-known asymptotic normality results in estimation), and Σ
depends on the Hessian matrix at θ* and the variance of the
noise in the loss measurements.  Unfortunately, (4.2) is not
directly usable in our comparative studies here since the other
three algorithms being considered here appear to have



convergence rate results only for the case of noise-free loss
measurements.  Recent results by Gerencsér (1999) and
Gerencsér and Vágó (2000) on noise-free SPSA may ultimately
be useful.

5. SIMULATED ANNEALING
ALGORITHMS

The simulated annealing (SAN) method (Metropolis et al.,
1953; Kirkpatrick et al., 1983) was originally developed for
optimization over finite sets.  The Metropolis method
produces a sequence that converges in probability to the set
of global minima of the loss function as Tk , the temperature,
converges to zero.  Geman and Hwang (1986) present a SAN
algorithm for continuous parameter optimization.  Their
algorithm produces a continuous-time  stochastic process—a
diffusion process—whose probability distributions converge
weakly to the uniform probability distribution concentrated
on the (global) minima of the loss function, as the temperature
decreases to zero.

More recently, Gelfand and Mitter (1993) obtained
discrete-time recursions for Metropolis-type SAN algorithms
that, in the limit, optimize continuous parameter loss

functions: Suppose that }ˆ{ kθ  is a Metropolis SAN

sequence for optimizing L and assume that the gradient g of L
exists (it does not have to be actually computed).

Furthermore, like SPSA, SAN has an asymptotic
normality result (but unlike SPSA, this result applies in the
noise-free case).  Let H(? *) denote the Hessian of L(?)
evaluated at ? * and let Ip denote the p × p identity matrix.  Yin
(1999) showed that for bk = (b/(k γlog (k 1−γ  + B0) )

1/2,

     [log (k 1−γ  + B0) ]
1/2( kθ̂ −  ? *)  ?  N(0, S) in distribution,

where ΣH + HTΣ + (b/a)I = 0.

6. EVOLUTIONARY COMPUTATION

There are three general approaches in evolutionary
computation, namely Evolutionary Programming (EP),
Evolutionary Strategies (ES) and Genetic Algorithms (GA).
All three approaches work with a population of candidate
solutions and randomly alter the solutions over a sequence of
generations according to evolutionary operations of
competitive selection, mutation and sometimes

recombination (reproduction).  The fitness of each population
element to survive into the next generation is determined by a
selection scheme based on evaluating the loss function for
each element of the population.  The selection scheme is such
that the most favorable elements of the population tend to
survive into the next generation while the unfavorable
elements tend to perish.

The principle differences in the three approaches are the
selection of evolutionary operators used to perform the
search and the computer representation of the candidate
solutions.  EP uses selection and mutation only to generate
new solutions.  While both ES and GA use selection,
recombination and mutation, recombination is used more
extensively in GA.  A GA traditionally performs evolutionary
operations using binary encoding of the solution space, while
EP and ES perform the operations using real-coded solutions.
The GA also has a real-coded form and there is some
indication that the real-coded GA may be more efficient and
provide greater precision than the binary-coded GA.  The
distinction among the three approaches has begun to blur as
new hybrid versions of EC algorithms have arisen.

Global convergence results can be given for a broad
class of problems, but the same can not be said for
convergence rates.  The most practically useful convergence
rates for EC algorithms seem to be for the class of strongly
convex fitness functions.  The following result due to
Rudolph (1997b) is an extension of a more general result by
Rappl (1989).  The theorem will be the starting place for the
specific convergence rate result that will be used for
comparison in Section 7.  A more complete discussion of the
relevant EC theory is in the full version of the paper.

An EC algorithm has a geometric rate of convergence if

and only if E[ *
kL −L(θ*)] = O(ck) where c ∈ (0, 1) is called the

convergence rate.  Under conditions, the convergence rate
result for a (1, λ)-ES using selection and mutation only on a
strongly convex fitness function is geometric with a rate of
convergence

c = (1 – 2
, pM λ /Q2) where pM ,λ =  E[Βλ:λ]>0

and where Βλ:λ  denotes the maximum of λ independent
identically distributed Beta random variables.  The
computation of Mλ,p is apparently very complicated since it
depends on both the number of offspring λ and the problem
dimension p.  An asymptotic approximation for the
convergence rate for the (N, λ)-ES where offspring are only
obtained by mutation is c  ≤ [1 – (2p−1log(λ/N))/Q2].



7. COMPARATIVE ANALYSIS

7.1 Problem Statement and Summary of Efficiency
Theory for the Four Algorithms

This section uses the specific algorithm results in Sections 3
to 6 above in drawing conclusions on the relative
performance of the four algorithms.  There are obviously
many ways one can express the rate of convergence, but it is
expected that, to the extent they are based on the theory
outlined above, the various ways will lead to broadly similar
conclusions.  We will address the rate of convergence by
focusing on the question:

With some high probability 1− ρ (ρ a small number), how
many L(⋅) function evaluations, say n, are needed to achieve
a solution lying in some “satisfactory set” S(θ*) containing
θ*?

For each of the four algorithms, we will outline below an
analytical expression useful in addressing the question.  After
we have discussed the analytical expressions, we present a
comparative analysis in a simple problem setting for varying
p.

Random Search

We can use (3.1) to answer the question above.  Setting the
left-hand side of (3.2) to 1 − ρ and supposing that there is a
constant sampling probability P* = P(θnew(k) ∈ S(θ*)) ∀ k , we
have

)1(log
log

*P
n

−
ρ

= .                                                           (7.1)

Simultaneous Perturbation Stochastic Approximation

From the fact that SPSA uses two L(θ*) evaluations per
iteration, the value n to achieve the desired probability for

kθ̂ ∈S(θ*) is then
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Simulated Annealing

The value n to achieve the desired probability for kθ̂ ∈S(? *)

is
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Evolutionary Strategy

The full version of the paper employs Markov’s
inequality and the bound in Rudolph (1997b) to show that for
each generation k , there are λ evaluations of the fitness
function so that n = λk, where

k  = 


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7.2 Application of Convergence Rate Expressions
for Varying p

We now apply the results above to demonstrate relative
efficiency for varying p.  Let D = [0, 1]p (the p-dimensional
hypercube with minimum and maximum θ values of 0 and 1 for
each component).  We want to guarantee with probability 0.90
that each element of θ is within 0.04 units of the optimal.  Let
the (unknown) true θ, θ*, lie in (0.04, 0.96)p.  The individual

components of θ* are *
iθ .  Hence,

.]04.0?,04.0?[...

]04.0?,04.0?[]04.0?,04.0?[)(?
**

*
2

*
2

*
1

*
1

D

S

pp ⊂+−×
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Table 7.1 is a summary of relative efficiency for the setting
above for p = 2, 5, and 10; the efficiency was normalized so
that all algorithms performed equally at p = 1, as described
below.  The numbers in Table 7.1 are the ratios of the number
of loss measurements for the given algorithm over the number
for the best algorithm at the specified p; the highlighted
values 1.0 indicate the best algorithm for each of the values of
p.  To establish a fair basis for comparison, we fixed the
various parameters in the expressions above (e.g., σ in SPSA
and SAN, ρ for the ES, etc.) so that the algorithms produced
identical efficiency results for p = 1.



Table 7.1.  Ratios of loss measurements needed relative to
best algorithm at each p for 1 ≤ p ≤ 10

p = 1 p = 2 p = 5 p = 10

Rand. Search 1.0 11.6 8970 2.0×109

SPSA 1.0 1.5 1.0 1.0

SAN 1.0 1.0 2.2 4.1

ES 1.0 1.9 1.9 2.8

Table 7.1 illustrates the explosive growth in the relative (and
absolute) number of loss evaluations needed as p increases
for the random search algorithm.  The other algorithms
perform more comparably, but there are still some non-
negligible differences.  For example, at p = 5, SAN will take 2.2
times more loss measurements than SPSA to achieve the

objective of having kθ̂  inside S(θ*) with probability 0.90.  Of

course, as p increases, all algorithms take more
measurements; the table only shows relative numbers of
function evaluations (considered more reliable than absolute
numbers).

This large improvement of SPSA and SAN relative to
random search may partly result from the more restrictive
regularity conditions of SPSA and SAN (i.e., for formal
convergence, SPSA assumes a unimodal, several-times-
differentiable loss function) and partly from the fact that
SPSA and SAN work with implicit gradient information via
gradient approximations.  The performance for ES is quite
good.  The restriction to strongly convex fitness functions,
however, gives the ES in this setting a strong structure not
available to the other algorithms.  It remains unclear what
practical theoretical conclusions can be drawn on a broader
class of problems.
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Abstract

We discussthe following measurablecharacteristicsof intelligentbe-
havior in computingsystems:(1) speedandscopeof adaptibility to
unforeseensituations,including recognition,assessment,proposals,
selection,andexecution;(2) rateof effective learningof observations,
behavior patterns,facts,tools,methods,etc.,whichrequiresidentifica-
tion, encapsulation,andrecall;(3) accuratemodelingandpredictionof
the relevantexternalenvironment,which includestheability to make
moreeffective abstractions;(4) speedandclarity of problemidentifi-
cationandformulation;(5) effective associationandevaluationof dis-
parateinformation; (6) identificationof more importantassumptions
andprerequisites;(7) useof symbolic language,including the range
anduseof analogiesandmetaphors(this is aboutidentificationof sim-
ilarities),andtheinventionof symboliclanguage,which includescre-
atingeffective notations.We make no claim that theseareall the im-
portantcharacteristics;discovering othersis thepoint of our research
program.

Key Phrases: Intelligent AutonomousSystems,MeasuringIntelli-
gentBehavior, ConstructedComplex Systems,ReflectiveInfrastructure

1. Introduction

Thispaperwill describesomecharacteristicsof intelligentcom-
puting systems,describehow to make measurementsof those
characteristics,anddiscusswhat they might mean,thoughwe
know that they do not cover the full spectrumof what is com-
monly consideredto be intelligent behavior. We extract these
mesaurementsfrom several differentviewpointsaboutwhat is
importantfor intelligentbehavior, andexplain theirmostpopu-
larly expectedimplications.

Intelligenceis difficult to measure,becauseit is thought
to bean intrinsic propertyof systems,like a potentialcapabil-
ity or competence,whereasthe only things that can be mea-
suredare actualperformancesundervariouskinds of condi-
tions. This problemhasplaguedthe evaluatorsof humanin-
telligencesincethebeginning,to thepoint thatthey havegener-
ally concentratedon measuringsomepostulatedcorresponding

performancecharacteristics[8].

Therefore,metricscanonly be basedon observedsystem
behavior (thoughthe observationscan,of course,measurein-
ternalprocessesfrom aninternalperspective,sincewecanhave
somekinds of internalaccess),sincewe have no directaccess
to how internal organizationand structureaffect intelligence.
Evenif weassumethatintelligenceis entirelyintrinsic,wecan-
notevaluateit separatelyfrom its correspondingbehavior (even
if the behavior is only observableintrospectively). Measuring
performanceto infer competence,evenof externallyobservable
behavior, is alsoverydifficult andtime-consuming,sincewein-
tendto usethemeasurementsoverarangeof situationsin order
to evaluatetheintelligenceof differentsystems.

Successin a particulartaskis not by itself the right crite-
rion (even if successwerewell-defined).Many intelligent de-
cisionsfounderon therocksof poorinformationand/ or unex-
pectedevents,andbruteforcecanmakeup for a lack of intelli-
gence(e.g.,DeepBlue’s defeatof Kasparov reliedon very fast
special-purposehardware).

Computer programs that play combinatorial gamesor
searchthe web are not very interestingto us from an intelli-
gent systemspoint of view, becausetheir domain is so lim-
ited and their goalsare provided from the outside. Even so,
we’re interestedin computerprogramsascreative entities(co-
investigators,so to speak,insteadof just tools), andwe think
thata carefulstudyof whatwe canmake programsdo will be
helpful in understandingwhat the issuesare [2] [4]. In order
to studythesepossibilities,we wantto definea setof measure-
mentsthatcanbeusedto differentiateandunderstandtherela-
tionshipsamongdifferentkindsof behavioral characteristics.

We considerautonomyto bemorethanchoosingmethods
to satisfygoals. A systemis autonomousto the extent that it
also choosesthosegoals. In fact, there are really only two
classesof (difficult) requirementsfor effective autonomy:ro-
bustnessandtimeliness. Robustnessmeansgracefuldegrada-
tion in increasinglyhostileenvironments,which to us implies
a requirementfor adaptability, andtimelinessmeansthat situ-
ationsarerecognized“well enough”and “soon enough”,and
that “good enough”actionsaretaken“soonenough”.Thereis



almostnever any optimizationhere(that almostalways takes
too muchtimeandrequirestoo muchinformation).

For thepurposesof this paper, we concentrateon themea-
surementprobleminsteadof theconstructionproblem,though
we have somedefiniteideasabouthow to build theseinterest-
ing programs,basedon our Wrappinginfrastructurefor Con-
structedComplex Systems[17] [21] [22].

2. System Behaviors

We’ll startwith theassumptionthata computingsystemis de-
signedto help its users do something[9]. That somethingis
a problemin somesubjectarea,suchas,for example,copy a
file in a computersystem,produceadocumentin a legaloffice,
kill monstersandcollecttreasuresin acomputergame,retrieve
awebpagefor auser, solveanequationin amathematicalsub-
ject area,find patternsin noisydatain a scientificfield, coordi-
natea distributedsimulationfor a military application,launch
a spacecraftin theaerospacebusiness,collaborateremotelyon
a designproblemfor spacesystems,etc..We’ll usethesecases
asillustrationsin therestof thediscussion.

In all of thesecases,thereis anapplicationdomain, which
providesa certaincontext of useandcorrespondingterminol-
ogy. Actually, this is moreof adomain-specificlanguage, since
it includesmore than just vocabulary terms. It alsohasa set
of abbreviationsand conventionsaboutwhat can remain im-
plicit, anda setof simplifications(which arefruitful lies about
theentitiesandbehaviors in thedomain).It is importantto note
thattheselanguagesmightor mightnotbewrittensymbolically,
since,for example,a computergameis often commandedus-
ing a joystick insteadof typedcommands,andsomeimmersive
Virtual Environmentsarecommandedby usermovementand
gesture.

Whattheuserwantsto dois calledtheproblem, whichonly
makessensewithin thecontext of interpretationprovidedby the
domain-specificlanguageof theapplicationdomain.Theselan-
guagesareusedto definetheproblemcontext or problemspace,
which is aspecializedcontext within theapplicationdomain,in
which it makessenseto statea problem.

In otherwords,it is our opinion thata problemcannotbe
evenstatedproperlyor sensiblywithout anagreedupon(more
often, merelyassumed)applicationdomainandproblemcon-
text. Very often,it is mistakesin thecommonunderstandingof
this problemcontext that leadsto unexpectedlybizarreor con-
strictingbehaviorson thepartof thecomputingsystem.

Sonow wehaveawell-specifiedproblemdefinedin aprob-
lem context. We arepurposelysettingasidecreativity for now,
thoughwe believe that this framework canalsobe appliedin
that case,with a problemstatementof finding the appropriate
well-definedproblem(thisapproachis partof ourProblemPos-

ing paradigm[20]). Explicitly identifyingtheproblem,andsep-
aratingit from thepossiblesolutionsor requireduseractions,is
an importantaspectof our approach.It allows many different
possiblesolutionmethodsto beconsidered.SinceNO oneanal-
ysisor problem-solvingmethodcandealwith all problemsin a
complex domain[6] [1], it is importantto have many methods
available.

Theseform theresourcespace, whichcontainsthecompu-
tationalandinformationresourcesthatareavailableto address
the problem. It is usually implementedas a large set of in-
dependentmethods,but we think that morestructureherecan
help(which is why we call it aspace).

A certainconfigurationof thoseresourcesis neededto ad-
dressthe particularproblemthat the userhasspecified. This
collectionis usuallymuchsmallerthanthetotal resourcespace,
so we call it the solution space. Sinceit containsonly those
resourcesrequiredto solve theproblem,we would ideally like
to have thecomputingsystemfind this spacequickly.

However, in order to find a solution space,very often a
much larger examinationspaceor discovery spacemust be
searched.

For example, in trying to prove a theorem(in geometry,
say), the problemspaceis one in which the assertioncan be
made,thesolutionspaceis onein which theproofcanbemade,
andwhichofteninvolvesextraelementsconstructedjust for the
proof. The resourcespaceis the collectionof lemmas,theo-
rems,inferencerules,problem-solvingmethods,andpreviously
solvedproblems,andthesolutionsearchspaceis muchwider,
sinceit hasto includemany differentkindsof constructionand
proof discoverymethods.

3. Characteristics

In this section,we discussthefollowing measurablecharacter-
istics of intelligent systems(it canbe seenthat therearenon-
trivial overlapsamongthem,which we try to unravel lateron):

1. adaptibility,

2. learning,

3. predictivemodeling,

4. problemidentification,

5. informationassociation,

6. assumptions,and

7. symboliclanguage.

In eachcase,we offer anapproachto at leastoneway to com-
puteameasurementvaluefor thecharacteristic,whichwehope
will stimulateothersto inventandprovidebetterones.



Wemakenoclaimthattheseareall theimportantcharacter-
istics;discoveringothersis thepoint of our researchprogram.

3.1.Adaptibility

By far the mostcommonlyexpressedattribute of intelligence
is adaptibility, which for us meansthe speedand scopeof
adaptibility to unforeseensituations,including recognition(of
theunforeseensituation),assessment,proposals(for reactingto
it), selection(of an activity), andexecution. Accuratepredic-
tion of effectsis evenbetter(andmoresuccessful),but wesave
thatonefor a latersection.

A commonexampleof adaptibility is flexible planning,in
which a systemcanreactquickly to situationsby changingits
plans.It seemsclearthatflexibility in plansis partly theresult
of their incompleteness:if thedetailedgoalsremainpartly un-
specified,thentherearemorepossiblestepsto take. This phe-
nomenonshowsup in programmingas“late binding”, in which
a resourceusedto addressa problemis oftennot selecteduntil
just beforeit is used(asin our Wrappingapproachto hetero-
geneoussystemintegration in ConstructedComplex Systems
[19]). Thedelayingof thesedecisionsdoes,of course,conflict
with rapidexecution,andtheresultingtradeoff is importantand
dependsessentiallyon rapidelaborationandevaluationsof the
choices.

To measureadaptabilityof a system,we have to presentit
with differentkindsof variability in its environment,andmea-
sureits performance,thenaveragethatperformanceoversome
variability measurementof theenvironment.Thevariability in
the environmentcanbe static (many differentkinds of slowly
changingenvironment),dynamic,(rapidly changingphenom-
enawithin theenvironment),andin bothcases,wecandescribe
the degradationin performanceasa functionof the variability
in theenvironment.

3.2.Learning

Anothercommonattributeof intelligenceis learning, whichfor
usis therateof effectivelearningof observations,behavior pat-
terns,facts,tools, methods,etc. [27]. Thereis an enormous
literatureon learningin humansandanimals,but our interest
hereis mainlyonthemeasurementsfor computingsystemsthat
can learn. Learningis aboutimproving performance,so in a
senseall of our proposedmeasurementscan be improved by
learning. Part of this learningincludesconceptformationand
formulation,which is a way to summarizedifferentstructures
andprocessescompactly. Wereturnto thispoint lateron, in the
sectionon symbolsystems.

It is importantto noteherethat therearesomefundamen-
tal limitationson thekindsof symbolsystemsthatcanbeused

in the expressive tasksabove. One of the limitations of any
discretesymbolsystemis the “get stuck” theorems[18] [23],
whichshow thatunlessasystemcanchangeits own basicsym-
bols, andre-expressits knowledgeandbehavior in new sym-
bols, new knowledgegraduallybecomesharderandharderto
incorporate,leadingto a kind of stagnation.

Measuringlearningis a little easierthanmeasuringadapt-
ability. We have long madea distinctionbetweena smartsys-
tem, which hasa lot of knowledgeaboutits domainof appli-
cability, andan intelligentsystem,which canlearnnew knowl-
edgequickly about its domainof applicability. Smartnessis
a performancecharacteristicthat is relatively easyto measure,
andthe ability to learn,which is aboutimproving that perfor-
mance,is easybut time-consumingto measure.

3.3.PredictiveModeling

An importantway to be lesssurprisedat environmentalphe-
nomenais predictivemodeling, which for us meansaccurate
modelingandpredictionof the relevant externalenvironment.
This kind of modeling includesthe ability to make more ef-
fective abstractions(which is treatedbelow in a later section).
Sincea systemcannotknow everythingaboutits environment,
weassumethattherewill bemultiplemodelscarriedin parallel,
with new datainterpretedinto informationusingthe modelas
aninterpretivecontext, andeachmodeladjusted,assessed,and
rankedfor likelihoodcontinually. Thiskind of modelingmakes
the computingsysteman anticipatory systemin the senseof
Rosen[33], sinceit canmake currentdecisionson thebasisof
its modelsof future effectsof its decisions.It is thereforeex-
pectedto bemuchmorecapablethanamerelyreactivesystem,
sinceit canbe preparingresponsesto its environmentbefore
anything importanthappensin theenvironment.

A concreteexampleof this kind of modelingis trying to
distinguishtrendsfrom fluctuationsat differenttime scalesin a
complex environment.In suchanenvironment,activity occurs
atmany timescales,sotheonly viableapproachis multiresolu-
tional [31] [32], thatis, thesystemmustmaintainseveraldiffer-
entfiltering processesthatexaminetheenvironmentatdifferent
resolutions(time,space,andevenconceptual),andlook for lo-
cal stationarity.

Therearethreekindsof modelsto beconsidered:empirical
models,which arecomputedaccordingto theobserveddata,a
priori models,which are provided up front, and fitted to the
data(we think thesearemuchlessimportantthanthe others),
anddeducedmodels,which arederivedfrom othermodelsand
knowledgeavailable.

In addition,analysesof thesemodelsrequiresseveraldif-
ferentkindsof reasoning,bothmathematicalandlinguistic[16].
Thesemethodsincludecase-basedreasoning, in which thesys-
temtriesto matchthecurrentsituationwith oneit hasencoun-



teredbefore,deductivereasoning, which canbe illustratedas
having statements“A” and“A impliesB” andconcludingstate-
ment“B”, andinductivereasoning, which canbe illustratedas
having statements“A” and “B” and concludingstatement“A
impliesB”. Thebest-known exampleof inductive reasoningis
exploratorypatternanalysis, which is awayof extractingprop-
ertiesof mostly unknown data. The last style of reasoningis
abductivereasoning, which canbe illustratedashaving state-
ments“B” and “A implies B” and concludingstatement“A”.
Thisstyleof reasoningis theonecorrespondingto explanation,
sinceit follows thedeductivechainsbackwards.

Measuringthemodelingcapabilityis not aboutcomparing
theresultingmodelswith theprocessesunderlyingtheenviron-
mentalphenomena,but rather, it is aboutmeasuringthecorrect-
nessor appropriatenessof the predictions. Somepredictions
take the form “this phenomenonis unimportant”,while some
mustbe muchmoredefinite,suchas“the moving ball will be
thereat thattime” or “the closingdoorwill beopenenoughfor
a few seconds”.Onceexplicitly formulated,thesepredictions
canbecompared,andtheresultsplottedagainstthecomplexity
of thepredictiontask(whichwe asevaluatorsmustassess).

3.4.ProblemIdentification

Thebestwayto respondto problemsquickly is to identify them
quickly, which requiresspeedandclarity of problemidentifica-
tion andformulation.In ouropinion,speedof problemsolution
is secondary. Even if we seemto specifya problemasa con-
strainedsearch,weseemto constructsearchspacesthatarevery
problem-specific,often extremely intricate, constructedusing
the constraintsdirectly (i.e., not by searchinga large encom-
passingspace,andignoringthepartsoutsidetheconstraints).

This problem identificationproblem is a specialcaseof
the situationidentificationproblem,in which acceptableper-
formanceis often dependenton recognizingthat a situationis
similar to oneencounteredbefore,andthat,in turn,dependson
identifying the“right” setof featuresof thesituationto explic-
itly noticeandrecall.

Naive modelsof situatedcomputingsystemsassumethat
all of the importantdata that definesa situationis contained
in thesensorvaluesfor that instant.Humansdon’t do that;we
seemto extractinformationfrom thedata,basedonanumberof
continual,particular, andonly occasionallygoal-directedmod-
els,andretainonly a smallpartof theactualsensordata.There
is alsosomereasonto believe thatwe only keepinterval aver-
ages,not instantaneouspictures,of a situation(even a mental
imageis the resultof a lot of processing,for objectseparation
andidentification,etc.).

Theability to identify importantsituationfeaturesquickly
andcorrectlydependson having at handtheright specification
spacesto determineanddescribethefeatures.

Very often, the applicationdomainand problemcontext
that allow a problemor even a situationto make sensemust
be inferredfrom the observableenvironmentalbehavior. This
processis also part of goodproblemidentification,a kind of
recognitionor noticing.

Good problemidentificationis an intermediatestagebe-
tweengoalsandsolutions,so it mustin partdependon there-
sourcesavailableto asystem.

Criteriafor goodproblemidentificationarestill difficult to
describe.We will take speedof problemformulation,succinct-
nessof problemstatement,andaccuracy of problemstatement
to be the maincriteria. Here,we canonly assesstheaccuracy
of theproblemstatementusingknowledgeof thepotentialsolu-
tion methods,sincetheeffectivenessof theproblemstatement
dependson which resourcescanaddressit.

3.5.Association

Oneof the clearestsignsof intelligenceis the wide scopeand
effectivenessof associations,andthecorrespondingevaluation
of disparateinformationfor inclusioninto a decisionprocess.
Discovery and explanationof new associationsis even fre-
quentlyassociatedwith creativity.

This includesseveral different kinds of reasoning,from
analogiesanduseof metaphors,throughtheconnectionof facts
to inferencerules. It includesways to usecomplex relation-
shipssummarizednumerically(aswe sooftendo whenwe im-
plementthesesystems),andit mustincludea very flexible rea-
soningsystem[16]. Thereis someargumentto the effect that
all of thesecanbe viewed assimilaritiesin conceptualspaces
[10], aslong aswe make theclassof spaceslargeenough(i.e.,
not just numericalones).

Theseabstractassociationsare also part of the mysteri-
ousphenomenonof “noticing”, whichcanoccurwhenrepeated
or anomalousenvironmentaleffectsarepushedinto awareness,
seeminglywithoutany prior attention.Similarly, weseemto be
adeptat noticingcorrelationsin temporalsequences(this abil-
ity clearlyhassomeevolutionaryadvantages),evenwhenthey
occurin distinctsensoryor conceptualspaces.

Thesimplestversionof theseprocessesusesempiricalsta-
tistical techniques,suchasthe useof co-occurrencemeasure-
mentsin naturallanguageinformationretrieval. Theseandre-
latedmethodswork surprisinglywell for this case[26], andwe
have shown that they canbe usedin other areasaswell [12]
[24].

Ontheotherhand,whatallowsthesemethodsto work well
is theexplicit representationsfor wordsandphrasesin thekinds
of documentsused. In our caseof ConstructedComplex Sys-
tems,the systemhasto make the representationsexplicit first,
after which the analysesare relatively easy. In particular, it



is importantto have a representationalmechanismthat allows
comparisonsin many differentconceptualspaces,sothatdiffer-
entkindsof associationscanbecomputedandanalyzed.

Sincewe discussin othersectionsthechoicesof represen-
tation and the difficulties of appropriateones,we considerin
this sectiononly the problemof computingassociations.We
couldposit that thewider theassociationsrange,i.e., themore
conceptualspacesareinvolved, the betterthe associationpro-
cess,but that width of scopehasto be tradedoff againstthe
speedof use of the associations,since we are actually only
ableto measureperformance,notcompetence.Thisability will
manifestitself asan improvedability to recognizesimilarities
in difficult problems,andan improved ability to useunlikely
resourcesto addressproblemsin a usefulway.

3.6.Assumptions

A perennialproblemwith reasoningin systems,and particu-
larly with deduction,is the mis-identificationand conflation
of assumptions.It is importantthat a systemcan identify its
moreimportantassumptionsandprerequisites,which includes
theability to widenacontext (by removingsomeof theassump-
tions).

This problemis a specialcaseof ComputationalReflec-
tion [28] [11], which is the ability of a ConstructedComplex
Systemto analyzeits own behavior [15]. Having accessto in-
ternaldatastructuresandreasoningprocessesin anexplicit and
analyzableway allows a systemto monitor its own behavior,
short-circuitunsuitablelinesof reasoning,andperform“what-
if ” studiesof itself,whichcaneliminatesomeerrorsbeforethey
occur [21] [24]. We have shown that it is relatively straight-
forwardto implementsystemswith this kind of Computational
Reflection[17], but thegeneralcaseis muchharder.

We canconsidersystemsthat identify theprerequisitesof
anaction,sinceidentificationof prerequisitesis abductive rea-
soning(alsocalled“backwardchaining” in theArtificial Intel-
ligenceliterature),but designinga systemthatcandeterminea
context limitation, which is a kind of prerequisiteof represen-
tation,andthenmoveoutsidethatlimitation, is muchharder.

Identifyingassumptionsis akind of creativereasoning,that
examinesreasonedargumentsandtransformtheminto aniden-
tificationof theassumptionsandinferencerulesrequiredto ac-
complishthearguments.Sinceweexpectthesystemto perform
theseoperationsitself, it musthave a mechanismfor reasoning
within a system,aboutthe boundariesand limitations of that
system.We think that this ability is bothhardandessentialfor
intelligentsystems.

We canmeasurehow well a systemidentifiesits own as-
sumptionsby placing it into environmentswheremany com-
mon assumptionsfail, andcheckinghow well the systemper-

forms. We can also useenvironmentsin which the basicas-
sumptionschangewith time, to seeif thesystemcanreactsuf-
ficiently quickly. Thesemeasurementsare subtle,and disen-
tanglingthemfrom theotherpossiblereasonsfor performance
failureswill be difficult. We needmuchbettermeasurements
here.

3.7.SymbolicLanguage

Perhapsthe most importantpropertyof all, in our opinion, is
the useof symbolic languagefor explicit representations,in-
cluding the rangeanduseof analogiesandmetaphors(this is
aboutidentificationof similarities),andthe inventionof sym-
bolic language,which includescreatingeffective notationsfor
internalrepresentation.This propertyis not altogetherunchal-
lenged,but despitethe“behavior-based”intelligencework [29],
we believe representationto beessentialat all levelsof intelli-
gence[3], especiallyfor computingsystems.

We repeatherethatwe don’t careparticularlywhetherliv-
ing systems(andin particularhumans)haveall of thesemodels
explicitly representedor implicitly embodied.Our Constructed
Complex Systemswill have themall explicit.

This property should be unraveled into several different
characteristics,but theredoesn’t seemto beanappropriateanal-
ysisof it yet, thoughtherearesomepromisingor at leastinter-
estingapproaches[34] [7], andwe have proposedan architec-
turethatemphasizesthesymbolsystems[22].

Suchan approachto the useof symbolsin Constructed
Complex Systemsmustaccountfor thesemanticsof represen-
tation [35], at many differentlevels,andfor the processesthat
changethoserepresentationmethods(ourconceptualcategories
areanexamplerepresentationstyle[13] [14], andourcomputa-
tional semioticsresearchis aboutchangingthesymbolsystem
whenit becomesnecessary[18] [23]).

It turns out that human expertise often correlateswith
better-organizedknowledge,andnot justwith moreknowledge,
sothatproblemsarerecognizedmorequickly [8].

Since, in our opinion, appropriateabstractionrequiresa
repertoireof conceptualspaces,sothattheimportantproperties
of the situationat handcanbe matchedto many morechoices
of analysisspace,andevaluative assessmentscanbecomepart
of the matchingprocess,we think that a very large repertoire
is needed,togetherwith somevery flexible and fast indexing
methods.

Following our own symbolsystemstudieshere[13] [14],
wemeasuretheuseof symbolsystemsvia anefficiency notion:
thetotal sizeof therepresentationsusedcomparedto thescope
of whatis represented.Thiscomparisoncanbeestimatedusing
theanalysisdescribedin thepaperscited:afixedsymbolsystem
hasa fixedfinite setof basicsymbols,anda fixedfinite setof



symbolstructurecombinationmethods.Thesesetsstrictly limit
the numberof distinctionsthat can be representedwithin the
symbol systemwith eachsize expression. If the systemcan
alsochangethecombinationmethods,thenthenumberscanbe
muchlarger(thoughthey arestill computable).

This measurementis, of course,an intrinsic one (i.e., it
is a competencemeasure),not an extrinsic one (i.e., a per-
formancemeasure),but we think that it will help us develop
moreperformancemeasurements.In addition,we want some
otherperformancemeasurements,suchas the speedof repre-
sentationalencoding,measuredin someunits independentof
machine-hardware,andthespeedof interpretationof thoserep-
resentations(which is aboutdeterminingtheappropriateaction
to take). Therearemany otherpossiblemeasureshere.

4. Intelligent Systems

In this section,we discusshow theseissuesaffect thedesignof
ConstructedComplex Systems[15], which areartificially con-
structedsystemsthat aremanagedor mediatedby computing
systems.We areconcernedwith issuesof autonomousandin-
telligentbehavior in suchsystems,which for us,at leastmeans
thatthesystemtakesamajorrole in selectingits own goals[17]
[25]. WhenweexpectConstructedComplex Systemsto operate
autonomously, whetherout in the real world or in cyberspace,
we needto incorporatea greatdealof flexibility andadaptabil-
ity into their designandimplementation.We have shown one
way to implementsucha system[21] [22], onethatalsohelps
avoid themostcommondifficulties found in complex comput-
ing systems:rigidity andbrittleness.

Biological systemshave muchmoreflexible andpowerful
adaptationpropertiesthanmostconstructedsystems[5], anda
carefulconsiderationof their propertiesprovidesstringentre-
quirementsfor the kind of ConstructedComplex Systemsthat
would beableto actautonomously. It alsogivesussomehints
aboutthedesignstructuresthatareneeded[30] [17].

Our approachis to definea new kind of architecture[22]
that includesbothour Wrappingintegrationinfrastructure[19]
and our ProblemPosing interpretation[20], that provides a
declarativeinterpretationof all programminglanguages,sothat
posedproblemscanbeseparatedfromapplicableresources,and
our conceptualcategories[13] [14] to provide a flexible repre-
sentationmechanismthat separatesmodelstructuresfrom the
rolesthey play.

Our Wrappingarchitectureprovidesthe requiredflexibil-
ity by supportingsystemsthat arevariableasfar down aswe
chooseto make them(evenall theway down throughtheoper-
atingsystemto thehardware)[15]. Onereasonthatwewantthis
variability is thatweexpectto studymany differentapproaches
to any givenproblemarea,andour infrastructurehasto support
alternativesfor almostevery partof every process.In fact,one

of theprincipleswehavehighlightedin ourarchitectureinvesti-
gationsis thatNO onemodel,language,or methodsufficesfor
acomplex system(or environment),sothevariability is not just
convenient;it is necessary[6] [1].

In addition, we take the hypothesizedcommonorigin of
languageandmovement[3] asa hint, sincethe implied layers
of symbolsystemscanbe implementedeasily in Constructed
Complex Systemsusinga meta-level architecture[17].

In additionto thedataandprocesses,we alsoneeda third
style of computation,that of “re-expression”,which allows a
systemto re-organizeitself whenits currentorganizationis not
adequate.What this meansfor us is that thesystemcansome-
how detectwhenits own representationalmechanismsarenot
adequate,andit canusethefailuresto helpinventnew ones.

To make things even more interesting,we also want to
have the systemdecide for itself when it needsto be re-
organized,becauseits fundamentalsymbolsystemsarenot ex-
pressive or powerful enough,and thencarry out for itself the
re-organizationautomatically, by definingnew symbolsystems
andre-expressingitself in thenew terms.This behavior is hard
to implementusefully, but wehavemadesomeprogressin iden-
tifying theimportantissues.

TheWrappingprocessesgive theprocessstructureandthe
Wrappingsand conceptualcategoriesgive the datastructure.
The re-expressioncriteria are implementedas resourcesthat
monitorthesystem.We describeeachof thesetechnicalissues
in turn, andthenshow how they canbe usedto helpconstruct
thekind of systemwewantto build.

Theessenceof computationis interpretationof symbolsys-
tems.Theonly operationsthata digital computercanperform
arecopying andcomparison.All arithmeticin digital comput-
ers is via limited-precisionexplicit modelsof the correspond-
ing integer or real arithmetic. Therefore,we cannotconstruct
computingsystemsto docomplex or otherwiseinterestingtasks
without many explicit modelsof thekindsof computation,de-
duction,or analysisrequired.All of thesemodelsmustthenbe
expressedin termsof theoperationsthatwe canimplementon
these(very) limited computers.

Thetheoremsof Turing,Go:del,andothersshow thatthere
are fundamentallimits on the expressive and computational
powerof computingsystems,but ALL of thetheoremsassume
that the symbolsystemremainsfixed (that is a basicassump-
tion in all of themathematicalproofs),andthat theparallelism
canbemappedinto interleavedevents.Systemsthatarenot re-
strictedin eitherof thesewaysmightescapetheboundsof these
theorems.This is oneof our currentdirectionof research[18]
[22] [23].



5. Conclusions

Wecareaboutmeasuringintelligencebecausewewantto build
suchdevices,andwithout somebettermeasurementprocesses,
wewill haveno repeatableway to evaluateandcomparediffer-
entdesigns.

We have describedsomepropertiesthat we think are im-
portant,thathave drivenour researchin ConstructedComplex
Systems,includingafew thathavenotbeenextensively usedor
identifiedin theliterature.Wedonot think thatthey completely
coverthespectrumof whatis commonlyconsideredto beintel-
ligentbehavior, but they docovermoreof thescopethansimply
“adaptability” or “intellect”.

We haveexaminedthesepropertiesto determinewhatthey
requireasfundamentalenablingcapabilities,anddescribedan
architecturethat includesall of theseenablers,asa way to test
our assertionsaboutthe connectionbetweenthemandintelli-
gentbehavior. Weexpectthataswebuild systemswith moreof
theseenablers,the systemswill exhibit moreof the important
propertieswe have identified, and at the sametime they will
seemmoreintelligent.

We think that this problem is hard, and that we are on
a right track (we make no assumptionabouthow many right
trackstheremaybe;themorewecollectively explore,themore
likely it is that we will get someof the right answers). We
think that fundamentalinvestigationslike thesearenecessary;
we hopethatthey aresufficient.
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Generalizing Natural Language Representations
for Measuring the Intelligence of Systems

A. Meystel
Drexel University, Philadelphia, PA 19104

Enhanced abstract

In the core of this method of intelligence evaluation, there is a concept of using natural language as the least

damaging medium for representing knowledge of the systems. The goal of all existing methodologies of knowledge

representation boils down to performing generalization of this knowledge in one of the existing forms: analytical

representation, automata theory, predicate calculus of the first order. Connectionist schemes are not on this list because the

problem of generalization upon the entity-relational network (ERN) have not been addressed consistently. In this paper, the

concept of constructing a nested multiresolutional system of ERNs by consecutive generalization of them bottom-up and

consecutive instantiation of them top-down. It is demonstrated that given a set of problems to be resolved, one can learn which

one the nested ERN alternatives is more appropriate for solving this set. Finally, a problem of evaluating ERN “for any set of

problems” is discussed.

Conceptual Paradigm. This theoretical paradigm relates to digital text processing equipment such as a computer

system used for text processing. The method and the apparatus is used to obtain a structure of text organization, elements of

which can be used upon the initial narrative for the subsequent processing in order to generate a variety of different texts that

have different degree of compression. It is anticipated that by constructing a proper organization of the text representation,

obtained from the original document, different structures of the text could be constructed, for example, the one that would

allow to encode its meaning as a set of nested and interrelated generalizations. In turn, this should allow for generating the

narrative text from each of these structure. These texts should be different in their level of generalization, focus of attention,

and the depth of detail.

 General Vision. As soon as the analysis starts, the whole texts changes its initial shape and demonstrates a

multiplicity of potential interpretations at each level of resolution. The text subjected to the process of analysis demonstrates

its semantic fuzziness, and combinatorial clouds of combinatorial possibilities emerge around each unit of the texts.  These

"clouds" characterize the interpretational ambiguity which should be eliminated (or at least, substantially reduced) as a result

of text processing. The fuzzy and not totally disambiguated units have frequently an emergent property of sticking together,

forming new generalized units that precipitate from the fuzzy intermediate structure. Eventually a new text emerges which is

shorter than the initial one. This "sticking together" happens in a strictly multi-granular fashion. Each text has a potential to

several rounds of compression by generalization as well as to several rounds of enhancement by instantiation. Construction of

such a multigranular structure can be performed for each text, or a group of texts.

This process of combinatorial fuzziness generation including the formation of the links of nestedness, and

precipitation of the multigranular text structure (together with levels of enhancement and/or compression) can be done

spontaneously during free, or goal driven interpretation of an unknown document. However, if the assignment contains the
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description of a specific customer's interests, this combinatorial fuzziness generation can be guided by this assignment. It

does not necessarily need to be guided. In the latter case, a summary of the general (non-goal-oriented) form is created.

Multiresolutional Structure of Text Representation. Extracting the multiresolutional (multigranular, multiscale)

structure (nested hierarchical architecture) of text units (entities) from the Text is a prerequisite to transformation from the

narrative representation into the relational architecture of knowledge. The main dictionary is used for the initial interpretation

of the units of Text, and the new domain dictionaries are formed for the text-narrative, or Original Text (OT) together with its

Structure of Text Representation (STR) as a part of the text analysis. The multiresolutional hierarchy of STR consists of the

units, which lump together elements of the text, that has emerged due to the "speech-legacy" grammar. Since the

transformation of OT into STR can be done through incremental generalizations within OT, building the vocabulary of the

OT is a prerequisite for the subsequent STR construction.

The vocabulary is a list of "speech-legacy" words that are symbols for encoding entities of the real situations and

can be represented by single words as well as groups of words. Entity is defined as a thing that has definite, individual

existence in reality or in the text; something "real" by itself. In other words, an entity of the reality is anything that exists,

important for registering and memorizing, has a meaning as a part of some functional description and is (or should be)

assigned a separate word (or a group of words) no matter whether we use it as a part of "speech-legacy" representation, or an

element of the STR. The first problem to be resolved is finding entities that are represented by single words, then test groups

of interrelated words, as phrases that denote entities. Therefore, functioning of STR requires understanding how

Units of representation. The decomposition of the uniform chaotic informational medium takes place driven by the

initial goal and a set of criteria that might determine different kinds of uniform media. Thus, the results of developing the

linguistic world representation depends on the aspect of interest submitted and encoded by the user. As a result of recognition

processes, a variety of singular information units (entities) emerges, which fit within a natural categorization that is implicitly

influenced by the observer. Formation of singularities (as entities) can be metaphorically described as a result of clustering

processes in which the elementary units of the primordial Text gravitate to each other in the areas of higher informational

density (where the elementary units are more in quantity, more interrelated, and more important for the user. For clarifying

the gravitational metaphor, we should emphasize that for the further discussion it is irrelevant whether the density is

increased as a result of the gravitation, or gravitation starts prevailing because of an initial increase in density. In our

disclosure, these processes are to be understood in computational terms. At this point, the observer will legitimately appear in

our presentation as a carrier of the interrelated concepts: scale, resolution, and granulation.

The concept of scale allows for introduction of a formidable research tool that can be applied for each couple of

adjacent levels of knowledge organization obtained by the method described in this Section of the disclosure. This tool is

related to the specifics of a different interpretation of units in higher and lower levels of resolution (HLR and LLR). The units

of the HLR emerge as a result of the process of forming singularities at the previous, even higher resolution level (which is

not a part of our couple levels of resolution under consideration). After these singularities have been formed, they receive an

interpretation, a meaning, a separate word of a vocabulary at this HLR. For the LLR of the pair of levels that we discuss,

these particular singularities have no meaning at all.

The meaning will emerge after these entities of the higher level of resolution (HLR) will assemble together into a

singularity which can be recognized by the user at the lower resolution level (LLR) as a meaningful entity. Before grouping
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of these entities into meaningful singularities happens, they are just nameless units with a tendency to gravitate to each other,

expressed in the set of their relations. This phenomenon is similar to physical gravitation although the gravitation “force”

depends on the text, context, goals, and other details of the situation. So, the process of entity formation for LLR recognizes

the entities of a HLR just as a set of anonymous units. Their “gravitational” field leads to clustering of features and can give a

birth to a new entity of LLR.

Phenomena of Attention: Scope and Focus. Windowing that has been demonstrated in Figure 3 is a result of the

need to focus our attention within a specific scope. Let us consider a particular zone of the medium that we use to evaluate;

we will call it the scope of interest. An imaginary large window (the scope of attention) is to be imposed upon the medium

(scope of interest). Then, the smaller window is sliding within the scope of interest to evaluate the information density. Thus,

the size of the scope of attention is presumed to be substantially smaller than the scope of interests. Density of non-uniform

units is to be computed within this window which allows evaluation of the continuum quantitatively. Then the window slides

over the whole scope of interest, and in each position the density is again computed.

The sliding strategy of moving the window of attention over an Image and/or Text is assigned in such a way that all

scope of interest can or will be investigated efficiently. This strategy can be different for constructing different models: we

can scan it in a parallel manner; we can provide a very unusual law of scanning; we can make random sampling from

different zones of the scope of interest. The strategy selection should depend on needs, hardware tools, and resources

available (for example, time). If values of density are about the same everywhere (with small variations within some

particular interval) then the medium is considered to be uniform.

Notice, a) that in order to introduce the concept of uniformity we used a sliding window which is one of the

techniques of focusing attention; b) that in order to form entities of a particular level of resolution we should group the

entities of the higher level of resolution; c) that to find candidate units for grouping we should search for future members of

these groups or otherwise combine them together. Later we will return to these operations as components of the elementary

unit of intelligence.

The idea of meaning of representation closure (MRC-loop) is tantamount to two fundamental iseas: a) the cybernetic

idea of feedback or circularity of control (information) circulating in the locally closed system to provide the ability for the

system to meaningfully function, and b) the physical idea of energy and matter conservation in the closed system.

The phenomenon of closure can be demonstrated required for explication of the meaning of representation which

provides for complete informational connectedness for the flow of representation which starts and ends in the Virtual

WORLD represented within a level of knowledge architecture. It is held at each level of granularity for the virtual World

determined by the alternatives of meaning implied by the Text and the Goal of the user.

We have developed algorithms of bottom-up consecutive generalization of ERN that represent the text and

algorithms of top-down instantiation. We have applied these algorithms to realistic text. The advantages as well as

deficiencies of the original text demonstrate itself more graphically as the process of generalization develops. As a result, it

becomes possible to judge the original text and even evaluate its advantages and disadvantages quantitatively.
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Abstract

We address the question of how to identify and

measure the degree of intelligence in systems.

We de�ne the presence of intelligence as equiv-

alent to the presence of a control relation. We

contrast the distinct atomic semioic de�nitions

of models and controls, and discuss hierarchi-

cal and anticipatory control. We conclude with

a suggestion about moving towards quantitative

measures of the degree of such control in systems.

1 Introduction: A Control

Theory Framework for Intel-

ligence

We consider some of the challenges presented in

the white paper designed to prepare for this con-

ference [13]. I take the fundamental question to

be \How can we as external observers measure

the degree of intelligence in a target system?"

One approach is to invoke the typical lists

which can characterize intelligent behavior, in-

cluding adaptability, complexity of internal mod-

els, problem solving ability, etc. But what is

fundamental to each of these? For example,

adaptability is the ability to adjust responses

to make them appropriate under variable condi-

tions. Problem solving is the ability to come to

�Prepared for the 2000 Workshop on Performance

Metrics for Intelligent Systems.

a correct choice about actions to achieve a par-

ticular goal, hereby solving the problem. And

�nally, complexity of internal models must al-

ways be considered as relative to their ability to

predict the outcome of future behaviors.

Thus can see that fundamental to all of these

is the idea that intelligence requires the ability

of a system to make appropriate decisions given

the current set of circumstances [1, 2, 3]. On

analyzing this a bit further, we can identify the

following necessary components:

Measurement: The ability to know the current

set of circumstances.

Decision: The freedom to choose between one

of many posibilities.

Goal: The possibility that the choice made will

be either appropriate or inappropriate rela-

tive to a goal state.

Action: The ability for the decision to a�ect ex-

ternal and future events, in order for them

to be either closer to or further away from

the goal.

2 Intelligence as Semiotic Con-

trol

We note the similarity to the scheme of an intel-

ligent system as outlined in the conference White



Paper [13]. This requires a \loop of closure" con-

sisting of six modules: a world interface, sensors,

perception, a world model, behavior generation,

and actuation. We understand this situation as

the existence of a semiotic control system. We

know brie
y outline the theory of semiotic sys-

tems.

2.1 Semiotic Models and Controls

There is a rich literature (eg. [5, 15, 17, 18, 19]),

traceable back to the founders of systems theory

and cybernetics in the post-war period [4], which

has tried to construct a coherent philosophy of

science based on two fundamental concepts:

� Models as the basis not only for a consis-

tent epistemology of systems, but also as an

explanation of the special properties of liv-

ing and cognitive systems.

� Control systems as the canonical form of

organization involving purpose or function.

While controls and models are distinct kinds of

organization, what they share is a common ba-

sis in semiotic processes, in particular the use of

a measurement function to relate states of the

world to internal representations. Perhaps for

this reason there has been some ambiguity in

the literature about the speci�c nature of con-

trols and models, and more importantly how the

interact. This has led to confusion, for exam-

ple, about the role of feedback vs. feedforward

control, and endo-models within systems vs. exo-

models of systems.

Consider �rst a classical control system as

shown in Fig. 1. In the world (the system's en-

vironment) the dynamical processes of \reality"

proceed outside the knowledge of the system.

Rather, all knowledge of the environment by the

system is mediated through the measurement

(perception) process, which provides a (partial)

representation of the environment to the system.

Based on this representation, the system then

chooses a particular action to take in the world,

which has consequences for the change in state

of the world and thereby states measured in the

future.

Representation Action

System

World' World

Measurement

Environment

Consequences

Dynamics

Decision

Figure 1: Functional view of a control system.

To be in good control, the overall system must

form a negative feedback loop, so that distur-

bances and other external forces from \reality"

(for example noise or the actions of other exter-

nal control systems) are counteracted by com-

pensating actions so as to make the measured

state (the representation) as close as possible to

some desired state, or at least stable within some

region of its state space. If rather a positive

feedback relation holds, then such 
uctuations

will be ampli�ed, ultimately bringing some crit-

ical internal parameters beyond tolerable limits,

or otherwise exhausting some critical system re-

source, and thus leading to the destruction of the

system as a viable entity.

Now consider the canonical modeling relation

as shown in Fig. 2. As with the control rela-

tion, the processes of the world are still repre-

sented to the system only in virtue of measure-

ment processes. But now the decision relation is

replaced by a prediction relation, whose respon-

sibility is to produce a new representation which

is hypothesized to be equivalent (in some sense)

to some future observed state of the world. To

be a good model, the overall diagram must com-

mute, so that this equivalence is maintained.

As outlined here, models and controls are dis-

tinct and atomic kinds of organization. We have

argued [8] that this capability begins with living

systems, and perhaps de�ned the necessary and

su�cient conditions for living systems.
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System

World World'

Measurement

Environment

Dynamics

Measurement

Figure 2: Functional view of the modeling rela-

tion.

2.2 Hierarchical Control

Of course, all of the relations described here are

a great deal more complex in real intelligent sys-

tems. In particular, usually controls and models

are considered together. This concept is fully de-

veloped elsewhere [7, 9]. We now summarize the

primary results of these considerations.

First, the classical view of linear control sys-

tems theory [14] is recovered by introduced a

\computational" step which plays the role of cog-

nition, information processing, or knowledge de-

velopment. Typically, extra or external knowl-

edge about the state of the world or the desired

state of a�airs is brought to bear, and provided

to the agent in some processed form, for example

as an error condition or distance from optimal

state. So now measured states are manipulated

and compared to a goal state.

In particular, we are impressed by Bill Pow-

ers system for hierarchical control [15, 16, 6],

which he has succesfully generalized to explain

the architecture of neural organisms. As shown

in Fig. 3, he views the computer as a compara-

tor between the measured state and a hypothet-

ical set point or reference level (goal). This then

sends the second representation of an error signal

to the agent. He also explicitly includes reference

to the noise or disturbances always present in the

environment, against which the control system

is acting to maintain good control. For us, these

are bundled into the dynamics of the world.

Another great virtue of Powers' control theory

World

Sensors

Comparator

Agent
(Decider)

Measurement

Error

Action

Representation

System

Environment

Set Point

Disturbances

Figure 3: A Powers' control system.

model is its hierarchical scalability. Fig. 4 shows

such a hierarchical control system, containing an

inner level 1 and the outer level 2. The �rst key

move here is to allow representations to be com-

bined to form higher level representations. In

the �gure S1 and S2 are low distinct level sensors

providing low level representations R1 and R2 to

the inner and outer levels respectively. But R1

is also sent to the higher level S3, and together

they form a new high level representation R3.

The second step is the ability for the action of

one control system to be the determination of the

set-point of another, thus allowing goals to de-

composed as a hierarchy of sub-goals. In the �g-

ure, the outer level uses R3 to generate the action

of �xing the set point of the lower level. Note

how this recovers Meystel et al's \Feature 10" of

multiscale knowledge representation where the

action of a lower level system is actually the goal

of an upper level system [13].

Notice also that the overall topology of the

control loop is maintained. While ultimately the

lower level is responsible for taking action in the

world, it is doing so under the control of the com-

parison of a high-level goals against a high-level

representation. Neural organisms especially are
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Figure 4: Hierarchical nesting of Powers' control

systems.

systems of this type, low-level motor and percep-

tual systems combining to accomplish very high-

level tasks. And of course, determination of the

outermost goal is not included within Powers'

formal model.

2.3 Anticipatory Control

While familiar to us as a standard engineering

discipline, a number of researchers are pursuing

the applicability of this kinds of semiotic control

[12]. It is also being generalized to a number of

other engineering [2] and scienti�c domains.

However, our normal sense of control combines

it with models, which are used to aid in decision-

making by predicting future states of anticipated

actions, using prediction of future events to guide

actions. This is what Ashby refers to as \`cause

control" [4], or Rosen as \anticipatory" [17], or

Klir as feedforward [10]. In this architecture an

endo-model embedded within a control system is

used to make a decision as to which action to

take, and thus acts in the role of the agent. It is

this view which most dominates our conception

of the nature of control in general.

However, this architecture is actually highly

complex and special. It is shown in Fig. 5, where

now the agent is replaced by an inner system

which is both a model and a control system (the

arrows have been re
ected diagonally to make

the graph planar and ease the drawing). This

inner system is a control system in the sense that

there are states of its \world", its \dynamics",

and an \agent" making decisions.

However, it is also a model in that the states

of its \world" are in fact representations, and

its \dynamics" is actually a prediction function.

The inner system is totally contained within the

outer system, and runs at a much faster time

scale in a kind of modeling \imagination". The

representation R from the sensors is used to in-

stantiate this model, which takes imaginary ac-

tions resulting in imaginary stability within the

model. Once this stability is achieved, then that

action is exported to the real world.

Note that the outer control loop here is simple,

lacking computation. In Powers' terms, there is

no set point which the state of the internal model

is being compared to. But this could be present

in a slight elaboration where an imaginary mea-

surement is taken from \world0" and compared

to some set point. The outer error signal would

then be fed to change the imagined actions inside

the model until stability is achieved.

3 Tests for the Presence of

Control

Thus we have now transformed the original ques-

tion of \how do we measure intelligence?" to

\How can we as external observers determine

whether a target system manifests control rela-

tions with its environment?" and \How can we

then measure the degree and modalities of that

relation?" I would then o�er some ideas based

on the work of Powers and his colleague Rick

Marken [11, 15, 16].
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Figure 5: Anticipatory control.

They address the question from the follow-

ing perspective. Control relations, in virtue of

the stability of the controled variables in the en-

vironment, have many of the characteristics of

other equilibrium phenomena. Both the thermo-

stat and the ball rolling to a stop at the bottom

of a hill evidence this kind of stability behavior.

In the �rst case, the ball does not want to roll

down the hill, but in a very real sense, the ther-

mostat does want to regulate its \perception" of

the state of the room temperature.

So how can we distinguish a complex dynamic

equilibrium from a control relation? Powers and

Marken do this distinguishing on the basis of

what they call The Test. It involves the sys-

tem acting in a way which is counter to physical

law: if the ball failed to roll down the hill, we'd

be surprised, thus we hypothesize that such a

ball is manifesting a control relation. Similarly,

we would normally expect a room to come to

equilibrium with its environment. When it does

not, and we believe our dynamical model, then

we would hypothesize the presence of a control

device, and we might investigate and discover a

thermostat. The \intelligence" of such systems

is based on their manifesting a semiotic relation

which has been selected by evolution or by de-

signers, allowing the system to \choose" to act

counter to physical law.

Now the rub is that this Test thereby requires

the prior presence of a model of what the sys-

tem should be doing, so that we can be surprised

when it fails to do so. Thus our recognition of a

control relation in an exogenous system requires

of us an exogenous model of reality, whether or

not the system has any endogenous model itself.

4 Towards a Measure of

Control-Based Intelligence

So now, given this semiotic control-based view

of intelligence, we wish to go on and attempt to

quantify and characterize the degree and kind of

control relations present. Thus the problem of

measuring intelligence revolves around our abil-

ity to measure:



� The amount of phenomena under control;

� The number of environmental distinctions

measured by the system;

� The complexity of modalities of measure-

ment and control;

� The complexity of the environmental variety

available to the measurement and control of

the system;

� If hierarchical control is present, what is the

depth of the hierarchy of control; and

� If anticipatory control is present, what is the

complexity of the internal, endogenous mod-

els?

No doubt in both real and designed systems

these are all related to each other in complex

ways. However, each of these quantitative terms

is e�ectively a statistical information measure,

a measure of variety or freedom. Thus th are

ammenable to information-theoretical measures

like entropies, based on quantities of variety, dis-

tinctions, and constraints which a control system

can recognize in its environment and then act on

in appropriate ways.
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ABSTRACT

This paper records some thoughts about defining and measuring machine intelligence.  It touches
on (1) the shortcomings of any scalar metric; (2) the power of having mixes of intelligence types
in a population of machines; (3) the special issues related to “common sense;” (4) the need to
broaden discussion beyond normally understood intelligence; (5) consistent with that, the need in
a population to assure for exploration and “mutation;” (6) some technical issues in modeling
reasoning in agents; and (7) a methodology (exploratory analysis) for measuring intelligence that
emphasizes a diversity of contexts.

Introduction

One of the many lessons learned from a century of work on human intelligence is that
intelligence is multifaceted.  It therefore appears wise to define and measure machine
intelligence as a multidimensional concept.1

Before elaborating, let me observe that some may quarrel with this conclusion.  After all, in
many endeavors it has proved feasible to combine various factors into a single scalar quantity
that “reasonably” measures what we are interested in.  We see this in the applications of multi-
attribute utility theory (MAUT)2 and in countless modeling problems where people introduce
abstractions that combine various factors in ways that appear adequately sound.  Furthermore,
IQs, SAT scores, and GRE scores are ubiquitous in assessments ranging from the personal
(“Wow, Marcus is really smart: he got a double 800.”) to hard-nosed decisions by admissions
committees at universities and managers in industry.  We all know that intelligence is a complex
issue, but most of us nonetheless use the simple metrics—at least to some extent.  Moreover,
they appear to be more than mere crutches; i.e., they actually do correlate, at least to some extent,
with things we care about (e.g., performance in classes or in the business environment).  And
shorthands are useful.

This said, the quality and depth of any discussion of machine intelligence and its measurement
would likely be greatly restricted by having a reductionist goal such as finding a single “IQ.”
Talking in shorthand is an excellent way to “dumb down” conversations and inquiries.

Consider the following as part of an indictment:

• The correlation of IQ and SAT scores with subsequent performance in graduate school and
life is only very modest.  Indeed, it is so modest that one can only puzzle about why so much

                                                
1 A major expositor of the multi-dimensional aspect of intelligence is Howard Gardner.
2 The classic reference is Keeney and Raiffa.



fuss is made over the related tests.  The answer appears to be only that the scores are the best
readily available predictors, even if they are poor predictors.3

• Studies indicate that the predictive power of the simple metrics is particularly poor in
explaining, for example, the effectiveness of top executives.4

• There are also “glitches” in the tests.  Apparently, Richard Feynman’s IQ was rated as
“merely” 122.

• At a more personal level, I believe that we probably all know individuals who would solidly
flunk tests of mathematics, even simple mathematics, but who are regarded as brilliant in
other ways—whether verbally, or, for example, in the arts.

• I suspect that most of us also know individuals well who on the one hand scored very highly
on intelligence tests and yet lack the capability to excel in various higher level activities.
Perhaps they lack common sense; perhaps they lack creativity; perhaps they are so obsessed
with numbers that they cannot deal with fuzzier aspects of life.

• Sallying forth into a more dangerous area, consider now what might be regarded as the
unmitigated stupidity of famous “geniuses.”  In the military domain, one might think of
Napoleon, who marched on Moscow in the winter and lost nearly his entire army.  Or, to
push the debating point even further, what should we make of certifiable sociopaths who
happen also to have IQs?  Some might claim “Oh, you’re confusing intelligence with mental
health.”  Perhaps, but which should we care most about when considering the performance of
future machines?

Let me now shift from the IQ business to multi attribute utility theory.  We know a great deal
about its usefulness and shortcomings.  Personally, I urge students of policy analysis to savor the
multiple attributes of strategies and avoid combining them until and unless it is necessary.  The
paradigm for displaying results of policy analysis is, for most of my colleagues and me, is a
“scorecard’ in which one views the ratings of options in each of a number of aggregate
categories.  We may or may not add up the scores for the purpose of having a single, simple-
minded, result (e.g., for making cost-effectiveness comparisons), but if we do it is only after we
have adjusted assumptions so as to assure that the aggregated result is “right.”  By that I mean
that decision-analysis methods are often most useful when used iteratively: we try to be logical
and explicit; we try to do things by the numbers; we look at the results; we then observe that they
are “wrong” (meaning that we don’t like them).5  We go back to the assumptions and either
fiddle the input scores or muse a bit until we discover some hidden variables that are bothering
us, and affecting us implicitly.  We then iterate.  And so on.  At the end of the process, the
algorithms may work and we may have a sense that we understand the problem, but this was due
to the disaggregated process of getting to that point.  At the trivial level, I like to challenge

                                                
3 One discussion of this is in Robert Klitgaard’s review of admission criteria.  Yet another is in a Robin Dawes’
book.
4 It is perhaps of interest to note that the SAT scores of both Presidential candidates have been bandied about in the
press.  Neither candidates scores appear outstanding when compared to those of top-half applicants to graduate
schools.  Given the achievements of the individuals to date, doesn’t this tell us something?
5 A familiar example here is how most of us read product evaluations in Consumers Reports or PC magazines.



students with a car-buying problem, the purpose of which is to demonstrate that the usual hard-
headed approach does a terrible job in representing our real values.  Some individuals, for
example, really do want a red Mercedes, and it’s hard to get that answer when looking at
mileage, repair costs, etc. etc.  Even if one has a category for “prestige” or some such, it is very
difficult to get the red Mercedes as the answer unless one essentially zeros out the other
categories or recognizes the shortcomings of the MAUT methodology with its assumptions of
linearity and related substitutability.  On the other hand, it can usefully determine the implicit
dollar value we are placing on “Red” and “Mercedes.”

In summary, I don’t believe that we should pursue the topic of the summer conference with the
goal of finding a simple-minded metric such as IQ or robot versions of GREs.  Nor, intuitively,
do I have faith here in something that assumes situation independence, linearity, and so on.

The Power of Mixes

Once we recognize that intelligence is a multifaceted concept, and that society places a high
value on all aspects of intelligence, broadly construed, then we are also ready to recognize the
value of healthy mixes.  Instead of optimizing the average “IQ” of a robot community, we
should instead seek to “optimize” the effectiveness of the community—perhaps omitting those
items we expect or want humans to continue to do.  Moreover, in “optimizing” we should apply
nonlinear schemes that assure that we don’t end up with able medioctrities.  For example, in
human society most of us believe that we benefit from having at least some people who are
extremely good at mathematics, physics, written verbal matters, spoken language, the arts, and
even the difficult human skills associated with the very best of leaders on the one hand, or the
best of clinical psychologists on the other.  But we don’t require all of these skills from
everyone.

To use a different analogy, consider how we go about dealing with medical issues.  Perhaps
some readers have a single physician who “does everything” from delivering babies to extracting
brain tumors, but the rest of us seek to have a mixture that includes top diagnosticians (the best
of whom are very smart in the traditional sense), very good internists who deal more with
quantity than the with the hardest cases, and various and sundry specialists.  Some of the
specialists may be superb at some skills (e.g., microsurgery), but pretty poor at others.  Whether
this is an urban myth or reality, I don't know, but I believe that it is widely accepted that
surgeons are not uncommonly a bit blockheaded and lacking in both subtleties and ability to read
and care for human beings except in “mechanical” ways.  Many surgeons even kid about this,
describing themselves as world-class plumbers.  Now, suppose that we wanted to choose a mix
of doctors for a community on the moon.  Would we look for some metric, test everyone, and
then optimize, or would we instead identify many attributes and assure that all were adequately
represented?

The Fundamental Challenge of Defining and Measuring Wisdom and Common Sense

Despite familiarity with the hilarious (or infuriating) shortcomings of some “artificial
intelligence” programs, I am not particularly mystical about issues such as wisdom and common
sense.  Intuitively, I believe that they have to some extent been over-rated as a reaction to
failures of the straightforward rule-based approaches in AI.  I suspect that with large enough
computers and sufficient emphasis on and time spent in training with neural nets and other
technologies, machines will eventually have remarkably good skills that include what look like
wisdom and common sense.



Nonetheless, this remains a frontier area for research.  Measurements would depend not just on
the intelligence “wired in,” but the intelligence developed by experience and the data bases
provided initially and built up over time.  As we know from discussions in many forums, it is
notoriously difficult at present to measure the information, knowledge, or value in data bases.
This, then, is just a warning of a different type.

Are We Talking About Intelligence, Humanity, or What?

We may be erring in focusing too exclusively on “intelligence,” given that the term
“intelligence” is usually associated with matters distinct from ethics, morality, or spiritualism
(broadly construed).  It is of interest to note that this mistake was not made by the late, great
Isaac Asimov.  It was not accidental that Asimov, rather than more pedestrian writers, took on
these issues directly.

As a hypothesis, it seems to me that it will continue to prove impossible to achieve top-notch
“intelligent performance” across a wide range of situations without having principles that
look more like ethics than electrical engineering.  We know that one of the special
characteristics of intelligent people is that they learn, taking on knowledge and skills that go
beyond what they were “programmed for.”  However, without some kind of principles to act as
filters, what machines (or, for that matter, people) choose to learn and experiment with may
prove dangerous.  Again, we can look to science fiction for examples.

Assuring Exploration and Mutation

Although we may differ among ourselves about the meaning and existence of “progress,” most
of us would agree that the processes of evolution such as mutation and natural selection have
profound effects.  Suppose that there were no mutations, or that there were no means by which to
select.  What might then have happened?  In a sense, we know.  For example, we know of the
extreme vulnerability of populations when they encounter a disease that is new to them.  And we
know of the extreme vulnerability of overly “nice” communities when they become prey to “bad
guys.”  What implications does this have for defining and measuring machine intelligence?
Well, the answer would differ if we had in mind only specialists such as window washers, rather
than colonizers of some hostile planet.  However, for some purposes at least, I would think that
what we would seek to define and measure—perhaps under the rubric of a generalized notion of
“intelligence—would include attributes such as audacity, curiosity, and the ability to “mutate”
(in a sense to be defined).

Some Technical Issues in Thinking About Building Intelligent Models

Much has been written about artificial intelligence modeling.  I would add here only a few
observations based on personal experience.  Some of this involved building a massive analytic
war gaming system during the cold war, one in which we had Red, Blue, and Green agents
representing the Soviet Union/Warsaw Pact, United States/NATO, and various third countries.
These agents made decisions about war, strategy, escalation, deescalation, and termination
amidst the events generated by a simulation.

The first observation is that such models are arguably likely to be more useful if they reflect a
strong design rather than, e.g., a more unstructured approach such as lots of miscellaneous rules
and an inference engine.  Even if performance in particular tasks might be very high with the
latter approach, credibility and understandability tend to go with structure and with the ability to
trace rationales.



Machines will need models of other machines, and highly simplified models of the other
machines’ modeling.  There is no infinite recursion here because—if for no other
reason—uncertainties in key inputs to judgments are sufficiently large that fine-tuning doesn’t
work well.  In our work, Blue’s decisions were based on a model of Red, which in turn had a
highly simplified model of Blue.  Both Red and Blue could learn to some degree as the
simulation proceeded, although this was wired-in learning such as changing planning factors
based on events in the simulation and assessing which opponent model seemed best given
observed behavior.

The second observation is that multiresolution modeling (MRM) is extremely important in such
work (and in other types of modeling as well).  By MRM I mean modeling that provides
alternative levels at which to make inputs, as distinct from modeling that merely provides
intermediate- and highly aggregated displays, but that does all calculations from the lowest level
upward.6

MRM is important for many reasons, but one of them is relevant here.  Higher level intelligent
behavior depends on higher-level models, not on calculations from incredible depth.  The
reasons relate to the enormous uncertainties that exist at lower levels (higher resolution)—not
only in “data,” but also in algorithms.  This is part of the celebrated “bounded rationality”
problem explained by Herbert Simon.  As a result, real people (and at least some intelligent
models) must be able to reason and decide at the level of abstractions.  Abstractions often get
built into models willy-nilly, but there is great benefit in designing them in from the start.
Ideally, models would also be able to infer their own abstractions on the basis of experience.
That is surely plausible with newer technology, but we’ve got a ways to go, to say the least.  In
the meantime, good design can be quite helpful.  I believe that one of the best ways to “measure”
the intelligence of machines will probably be to review the hierarchical concepts it uses and the
processes used to move up and down those hierarchies.  That is, just as we assess unintelligent
computer programs not only in terms of sampled behavior, but also in terms of inputs, structure,
etc., so also for intelligence.

Some of this has interesting linkages to common sense, understandability, cause-effect
relationships, and learning.  As a rule of thumb, I believe that a model intended to work at level n
of resolution should be accompanied by models at levels n+1 and n-1.  The more abstract version
may be needed for planning functions such as screening, and the more detailed version may be
needed to provide “explanations” (a highly relative concept) and the potential for a kind of
learning that would adjust the level-n model.  Experiences that may appear magical at the
intended level, level n, may be explainable at level n+1 of resolution and it may be possible to
use the experiences to recalibrate lower-level assumptions and generate new abstractions.
However, if the more detailed model doesn’t even exist, then it would seem that the only
recourse would be for the machine to use various and sundry techniques such as statistical
analysis to infer what are additional variables.  There are severe shortcomings to such an
approach—if, at least, it is feasible to do better.   This said, it is clear that humans do have the
capability—with considerable effort—to see new things and find new ways to reason without

                                                
6 One paper on the subject is Davis and Bigelow, Experiments in Multiresolution Modeling, RAND, 1998, which is
available online at www.rand.org/personal/pdavis.  Alex Mystel has also written on related subjects for some years.
Bernie Zeigler discusses related matters such as morphism in his text (Theory of Modeling and Simulation, 2000).



them having been wired in our software.  But we all know how useful it is to have analogies,
metaphors, or theories to help.

It follows that one measure of intelligence might be the structural richness of reasoning models:
is it sufficient to accommodate a good deal of experience-based learning?

Exploratory Analysis as a Key to Measuring Intelligence in an Uncertain World

One of the principles of our discussion of intelligence should be that the intelligence of a
machine cannot usefully be judged independent of context.  “Performance” measures exist, of
course (e.g., processing speed), but how “intelligent” something is needs to be measured in
relationship to both tasks to be done and contexts in which to do them.  These, of course, are
extremely uncertaint.  This is obvious enough, but by analogy with my work in policy analysis I
would argue that special methods are needed to make use of this notion.  In particular, we should
plan to construct what I have variously called “scenario spaces” or “assumptions spaces” in
which to test our behaviors.  Not only is it insufficient to pick an allegedly representative
context, and work away at measurements for that, it is also not sufficient to do sensitivities
around that context.  Key reasons are as follows.  First, there may not be a meaningful best-
estimate or representative context; instead, there may be massive uncertainties that make any of
many possible and very different contexts plausible.  Second, the effects of contextual variables
may be highly interactive, so that any linear approach to sensitivity testing would fail.

The approach my colleagues and I have used in this regard involves “exploratory analysis,”
which emphasizes studying the problem (e.g., assessing behavior’s effectiveness) in a vast
scenario space that is designed for comprehensiveness rather than detail.  I refer to both
parametric and probabilistic explorations.  In the first, one discretizes the context’s defining
variables, and creates experimental designs that consider all (or a cleverly sampled subset) of the
many combinations.  In simple cases, we can do the full factorial design.  In the second
approach, one represents the defining variables’ uncertainty with uncertainty distributions.
Ultimately—after initial exploration—one settles on a hybrid approach in which some key
variables are parameterized (so that one can see cause-effect relationships in output displays) and
the others are treated probabilistically and convolved.

It is possible in such exploratory-analysis work to gain insights about a system’s effectiveness
over an enormous range of conditions (and with different measures).  Once that is done, one
may also want to delve into details—perhaps far into the morass of details—but at least one will
know where the potential paydirt is.7

Fortunately, recent technology makes a great deal of this type of thing feasible—even with PCs
on our desktop at home.  We are already at the stage where much can be learned by “flying
through the space of outcomes” using clever graphics, and thereby seeing what regions (what
combination of variable values) are most important (e.g., acceptable or unacceptable outcomes).

These exploratory analysis methods could prove quite powerful in the task of assessing the
intelligence of machines.

                                                
7 Exploratory analysis is discussed at some length in a forthcoming monograph, “Exploratory Analysis of Strategy
Problems Amidst Massive Uncertainty,” by me and Richard Hillestad.  A short paper on the subject is available
upon request.
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Abstract

As research expands in multiagent intelligentsystems, in-
vestigators need new tools for evaluating the artificial soci-
eties they study. It is impossible, for example, to correlate
heterogeneity with performance in multiagentrobotics with-
out a quantitative metric of diversity. Currently diversity is
evaluated on a bipolar scale with systems classified as ei-
ther heterogeneous or homogeneous, depending on whether
any of the agents differ. Unfortunately, this labeling doesn’t
tell us much about the extent of diversity in heterogeneous
teams. How can it be determined if one system is more or
less diverse than another? Heterogeneity must be evaluated
on a continuous scale to enable substantive comparisons
between systems. To enable these types of comparisons, we
introduce: (1) a continuous measure of robot behavioral
difference, and (2) hierarchic social entropy, an application
of Shannon’s information entropy metric to robotic groups
that provides a continuous, quantitative measure of robot
team diversity. The metric captures important components
of the meaning of diversity, including the number and size
of behavioral groups in a society and the extent to which
agents differ. The utility of the metrics is demonstrated in
the experimental evaluation of multirobot soccer and multi-
robot foraging teams.

1 Introduction

Heterogeneous systems are a growing focus of robotics
research [FM97, GM97, Par94, Bal99]. Presently, diversity
in these systems is evaluated on a bipolar scale; systems are
classified as either heterogeneous or homogeneous depend-
ing on whether any of the agents differ. This view is lim-
iting because it does not permit a quantitative comparison
of heterogeneous systems. A principled study of diversity

�This is an abbreviated version an article published in Autonomous
Robots, vol 8, no 3.

requires a quantitative metric. Such a metric would enable
the investigation of issues like the impact of diversity on
performance, and conversely, the impact of other task fac-
tors on diversity. To address this, we propose social entropy
(computed using Shannon’s information entropy formula-
tion [Sha49]) as an appropriate measure of diversity in robot
teams.

In this paper we briefly introduce the mathematical for-
mulation of individual robot difference and robot soci-
etal diversity. More details and examples are provided in
[Bal00].

2 The meaning of diversity

What does diverse mean? Webster [MW89] provides the
following definition:

di.verse adj 1: differing from one another: unlike 2: com-
posed of distinct or unlike elements or qualities

Clearly, difference plays a key role in the meaning of di-
versity. In fact, an important challenge in evaluating robot
societal diversity is determining whether agents are alike or
unlike. Assume for now that any two agents are either alike
or not.

Now consider what diverse means for societies com-
posed of several distinct subsets. To make the discussion
more concrete, suppose the “society” under examination is
a collection of four different shapes: circles, squares, tri-
angles and stars. Figures 1 and 2 illustrate several sets of
shapes as examples of ways the groupings can differ. The
goal is to develop a quantitative metric that captures the
meaning of diversity illustrated in these examples.

First, how should the number of distinct subsets in a soci-
ety impact the measured diversity? Consider Figure 1: four
sets of 12 shapes. Each set has a different number of ho-
mogeneous subsets; from one homogeneous subset in Fig-
ure 1a (all circles) to four in Figure 1d. This example sug-
gests that the number of homogeneous subsets in a society
is an important component of measured diversity.



a b c d

Figure 1. Several collections of shapes. The number of homogeneous subsets in each collection
grows from one in a to four in d.

a b

Figure 2. In both of these groups there are the
same number of shapes and the same num-
ber of homogeneous subsets, but the propor-
tion of elements in each subset is different.

Now consider Figure 2. Which group of shapes is more
diverse? In both cases there are exactly 12 shapes and ex-
actly two different types. In Figure 2a however, there is a
much higher proportion of circles than in 2b where there is
an equal number of circles and squares. This example sug-
gests that the relative proportion of elements in each subset
is an important component of diversity.

These examples highlight the fact that the distribution of
the agents between homogeneous subsets is at the core of
the meaning of diversity. In light of this observation, we
make the following commitment: the measured diversity
of a multiagent society depends on the number of homo-
geneous subsets it contains and the proportion of agents in
each subset.

3 Simple social entropy

How should diversity be quantified? The properties
Shannon sought in a measure of information uncertainty
are also useful in the measurement of societal diversity
[Sha49]. In fact, researchers in a number of disciplines have
adopted information theoretic concepts of diversity. Infor-
mation entropy is used by by ecologists as a means of eval-
uating species’ diversity [LVW83, LW80, Mag88], by so-

ciologists as a model of societal evolution [Bai90], and by
taxonomists as a tool for evaluating classification method-
ologies [SS73, JS71].

Before proceeding we must introduce some notation:

� R is a society of N agents with R = fr1; r2; r3:::rNg

� C is a classification of R into M possibly overlapping sub-
sets.

� ci is an individual subset of C with C = fc1; c2; c3:::cMg

� pi =
jcijP
M

j=1
jcj j

is the proportion of agents in the ith subset;

and
P

pi = 1.

In the last section we argued that the measured diver-
sity of a system should reflect the number of groups in the
system and the distribution of elements into those groups;
diversity should therefore be a function of M and the pis
as defined above. Assume that a diversity metric exists and
call it H. The diversity of a society partitioned into M ho-
mogeneous subsets is written H(p1; p2; p3; :::; pM). So, for
instance, the diversity of the group of shapes depicted in
Figure 2a is H

�
1

12
; 11
12

�
, while the diversity for the group of

shapes in Figure 2b is H
�
1

2
; 1
2

�
. The diversity of a particu-

lar robot societyRa can also be expressed H(Ra).
Shannon prescribed three properties for a measure of in-

formation uncertainty [Sha49]. With slight changes in nota-
tion, they are equally appropriate for a measure of societal
diversity:

Property 1 continuous: H should be continuous in the pi.

Property 2 monotonic: If all the pi are equal, (i.e. pi =
1

M
), then H should be a monotonically increasing

function of M . In other words, if there are an equal
number of agents in each subset, more subsets implies
greater diversity.

Property 3 recursive: If a multiagent society is defined
as the combination of several disjoint sub-societies, H
for the new society should be the weighted sum of the
individual values of H for the subsets. This property
is important for the analysis of recursively composed
societies (e.g. [MAC97]).

2
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Figure 3. A new society (right) is generated
by combining two others (left). The diversity
of the new society is a weighted sum of the
individual values of H for the subsets.

The meaning of the requirement that H be recursive is
illustrated in Figure 3. The two groups on the left are com-
bined into a new society on the right. In general, for a soci-
etyRc composed of two societies,Ra andRb, the recursive
criteria ensures that:

H(Rc) = H(�; �) + �H(Ra) + �H(Rb)

where � is the proportion of agents inRa, � is the propor-
tion of agents inRb and �+ � = 1.

Shannon’s information entropy meets all three criteria
[Sha49]. The information entropy of a random system X
is given as1:

H(X) = �K

MX
i=1

pi log2(pi) (1)

where K is a positive constant. Because K merely amounts
to the choice of a unit of measure, Shannon sets K = 1
[Sha49]. Equation 1 (with K = 1) is adopted for the mea-
surement of multiagent societal diversity. H(Ra) is the
simple social entropy of agent societyRa.

1H(X) is used in coding theory as a lower-bound on the average num-
ber of bits required per symbol to send multi-symbol messages. The ran-
dom variable X assumes discrete values in the set fx1; x2; x3:::xMg (the
alphabet to be encoded) and p i represents the probability that fX = xig.

In addition to Properties 1, 2 and 3, H has a number of
additional properties that further substantiate it as an appro-
priate measure of diversity. First, as we would expect, H
is minimized for homogeneous societies; these groups are
the least diverse. Also, for heterogeneous groups H is max-
imized when there are an equal number of agents in each
subset. More precisely:

Property 4: H = 0 if and only if all the pi but one are
zero. In other words H is minimized when the system
is homogeneous. Otherwise H is positive.

Property 5: For a givenM (number of homogeneous sub-
sets), H is maximized when all the pi are equal, i.e.
pi = 1

M
. This is the case when there are an equal

number of agents in each subset.

Property 6: Any change toward equalization of the pro-
portions p1; p2; : : : ; pM increases H. Thus if p1 < p2
and we increase p1, decreasing p2 an equal amount so
that they are more nearly equal, H increases. An im-
portant implication is that there are no locally isolated
maxima.

Even if these properties are desirable in a diversity met-
ric, why choose information entropy over another function
possessing the same properties? Because, as it turns out,
information entropy (Equation 1) is the only function sat-
isfying Properties 1, 2 and 3. Shannon proved this result
using the mathematically equivalent properties he required
of an information uncertainty metric [Sha49].

The entropy of a number of example systems using this
metric is given in Figure 4.

4 Classification and clustering

The discussion of diversity left open the question of how
agents are classified into subsets. It was assumed that any
two agents are either alike (in the same subset) or unlike. In
actuality, the robotic agents to be classified are distributed
in a multi-dimensional space where the dimensions cor-
respond to components of behavior and difference corre-
sponds to the distance between agents in the space. Dif-
ference between agents is likely to vary along a continuous
spectrum instead of in the binary manner assumed previ-
ously.

The challenge of finding and characterizing clusters
of elements distributed in a continuous multi-dimensional
space is exactly the problem faced by biologists in building
and using taxonomic systems. In the case of biology the
dimensions of the space represent aspects of morphology
or behavior that distinguish one organism from another. In
this research the dimensions are the components of behavior
that distinguish one robot from another.

3
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Figure 4. A spectrum of diversity. In the diagram above, each of the six squares encloses a multiagent
system, from least diverse (homogeneous) on the left, to most diverse (most heterogeneous) on the
right. The simple social entropy, a qualitative measure of diversity, is listed underneath each system.

The aims of taxonomic classification are distinct from
other types of classification in that one goal is to arrange the
elements in a hierarchy reflecting their distribution in the
classification space. Conversely, many classification tasks
only require a simple partitioning of the space (e.g. cate-
gorizing e-mail into folders). Taxonomic trees (the end re-
sult of the taxonomic classification process, e.g. Figure 5)
are potentially more useful in the analysis of diversity than
simple partitionings because they provide more information
about the society’s spatial structure.

Biology offers a rich literature addressing this problem.
In fact, an entire field — numerical taxonomy — is devoted
to ordering organisms hierarchically using principled nu-
merical techniques [SS73, JS71]. Many of the approaches
in numerical taxonomy are directly applicable to the prob-
lem of robot classification. They include mechanisms for
building and analyzing classification structures (e.g. taxo-
nomic trees) and for identifying organisms on the basis of
these structures.

Techniques from numerical taxonomy address the prob-
lem of how to classify organisms, or groups of organisms,
at various levels. At the lowest level in biological classifi-
cation for instance, humans and gorillas are more likely to
be classified together than, say, humans and dogs. But at
a higher level, primates are in fact grouped with canines in
the class mammalia. Dendrograms provide an orderly hier-
archic view of the these classifications. While dendrograms
per se are not necessary for the evaluation of diversity, they
are useful visualization tools and their construction provides
clues for the evaluation of overall societal diversity.

Dendrograms are constructed using a clustering algo-
rithm parameterized by h, the maximum difference allowed
between elements in the same subset. The notation D(a; b)
is used to refer to the difference between the elements a and
b. In most applications the difference metric is normalized
so that taxonomic distance between any two elements varies
between 0 and 1. When h = 1 all elements are grouped
together in one cluster (see the cluster at the top right in
Figure 5 for example). As h is reduced from 1 down to 0

Figure 6. The branching structure of the den-
drograms for these two societies is the same.
However, the more compact distribution of el-
ements in the system on the upper right is
reflected in the branches being compressed
towards the bottom of the corresponding den-
drogram (lower right).
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Figure 5. Example classification using numerical techniques. The top row shows how the system
is clustered at several levels, parameterized by taxonomic level h (h is distinct from information
entropy H). The classification is summarized in a taxonomic tree, or dendrogram (bottom). Strong
similarities between elements are indicated by grouping near the bottom of the dendrogram; weaker
similarities between groups are reflected in converging branches at higher levels.

cluster boundaries change; the number of subsets increases
as they split into smaller clusters. The splits are reflected
as branches in the dendrogram. Finally, when h = 0 each
element is a separate cluster; a “leaf” at the bottom of the
dendrogram “tree.”

Dendrograms can reveal subtle differences in societal
structure. Figure 6 for example, shows two societies with
the same relative arrangement of elements, but one group-
ing is compact while the other is spread out over a larger
area. The difference in scale is reflected in a compressed
dendrogram for the spatially compact society (Figure 6
right). Can these differences be accounted for in the evalu-
ation of diversity?

The spatial extent of elements in a taxonomic space is a
reflection of the degree of difference between agents. Note
that sensitivity to the degree of difference between elements
in hierarchic clustering depends on h. Because h is a pa-
rameter of the clustering algorithm, it can be varied to ex-
amine clusterings at any scale. Hierarchic algorithms are,
in effect, variable power clustering microscopes. For values
of h near zero the tiniest difference between elements will
cause them to be classified separately, while the clusterings
at large values of h reveal societal structure at a macro-
scopic level. This feature is exploited in the development
of a diversity measure sensitive to differences in the spatial

size of societies.

5 Hierarchic social entropy

Now consider how these tools from numerical taxonomy
can be applied to the measurement of diversity. The dis-
cussion of hierarchic clustering algorithms above described
how the number and size of clusters depend on h. But how
is simple social entropy impacted by changes in h? Since
the partitioning of a society is based on h the entropy also
depends on it. An example of the relationship is illustrated
in Figure 7. Entropy changes in discrete steps as h in-
creases. Note that points where change occurs correspond
to branch points in the dendrogram.

Compare the dendrograms and entropy plots of the two
societies in Figure 7. As in the earlier example, the two
groups have the same relative structure, but the society rep-
resented on the right is more compact, resulting in branch-
ing compressed towards the bottom of the tree. The differ-
ence in scale is also readily apparent in the plots of entropy.
Entropy drops to zero much more quickly in the plot cor-
responding to the compact society. Because the value of
simple entropy depends significantly on h when hierarchic
clustering is used, we augment the notation to account for
this:

H(R; h) = H(R) for the clustering of R at taxonomic level h(2)
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Figure 7. Entropy depends on h. A compari-
son of entropy versus h for for two societies.
For clarity, the dendrogram is rotated 90 de-
grees.

H is a function of R and h because the classification of
agents into subsets, and therefore the entropy, depends on
them both. This highlights the fact that the entropy of a
particular clustering is only a snapshot of the society’s di-
versity. A comprehensive evaluation of diversity should ac-
count for clustering at all taxonomic levels. This is eas-
ily accomplished using the area under the entropy plot as a
measure of diversity. This augmented metric, called hierar-
chic social entropy, is defined as:

S(R) =

Z 1

0

H(R; h)dh (3)

where R is the robot society under evaluation, h is a pa-
rameter of the clustering algorithm indicating the maximum
difference between any two agents in the same group and
H(R; h) is the simple entropy of the society for the cluster-
ing at level h. Note that as h!1 a point is reached where
all elements are clustered in the same subset (the maximum
taxonomic distance). H(R; h) drops to 0 at this point. In
the behavioral difference measure used in this work, the
maximum possible difference between elements is fixed at
1.0, so the upper limit of the integration is 1 rather than 1
as in the general case.

Hierarchic social entropy is a continuous ratio measure;
it has an absolute zero (when all elements are identical) and
equal units. This enables a total ordering of societies on the
basis of diversity. It also provides for quantitative results of
the form “Rb is twice as diverse as Ra.” This is a signifi-
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Figure 8. Hierarchic social entropy (bottom) is
computed for three societies (top). The val-
ues are 0.715 for the system on the left and
1.00 for the system on the right. The calcu-
lated value increases as the element on the
upper right is positioned further away from
the group. Dendrograms for the groups are
also displayed (middle row).

cant advantage over the categorization of systems as simply
“homogeneous” or “heterogeneous.” Three example calcu-
lations of hierarchic social entropy are provided in Figure 8.

6 Behavioral difference

To summarize: hierarchic clustering is a means of divid-
ing a society into subsets of behaviorally equivalent agents
at a particular taxonomic level. Diversity is evaluated at
each taxonomic level based on the number of subsets and
the number of robots in each subset at that level. Integrating
the diversity across all taxonomic levels produces an over-
all measure of diversity for the system. Previous sections
have described the overall diversity metric and algorithms
for clustering the agents into subsets. This section focuses
on the difference metric used for clustering.

How should the behavior of two agents be compared?
The technique advocated here is to look for differences
in the agents’ behavioral coding. In many cases (e.g.
[BBC+95, Mat92, GM97]) robot behavior is coded stati-
cally ahead of time, thus individuals may be directly com-
pared by evaluating their behavioral configuration. Learn-
ing multirobot systems (e.g. [Bal97, Mat94]) pose a chal-
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lenge because their behavior evolves over time. To avoid
that problem in this research, the policies of learning agents
are evaluated after agents converge to stable behavior.

This approach depends on three key assumptions:

Assumption 1: At the time of comparison, the robots’
policies are fixed and deterministic.

Assumption 2: The robots under evaluation are substan-
tially mechanically similar: differences in overt behav-
ior are influenced more significantly by differences in
policy than by differences in hardware.

Assumption 3: Differences in policy are correlated with
differences in overt behavior.

If these conditions are not met in a particular multirobot
system, the approach may not be appropriate. But the as-
sumptions are reasonable for the conditions of this research,
namely: experiments conducted on mechanically similar
robots built on the same assembly line. Control systems
running on the robots differ only in the data specifying each
agent’s policy. The comparison of these policies is the crux
of the approach.

To facilitate the discussion, the following additional
symbols and terms are defined:

� i is a robot’s perceptual state.

� a is the action (behavioral assemblage) selected by a robot’s
control system based on the input i.

� �j is rj’s policy; a = �j(i).

� pij is the number of times rj has encountered perceptual state
i divided by the total number of times all states have been
encountered. Experimentally, pij is computed post facto.

The approach is to evaluate behavioral difference by
comparing the robots’ policies. The two foraging robots in-
troduced earlier, for example, exhibit behavioral differences
that are reflected in and caused by their differing policies. In
the terminology introduced above, i represents the percep-
tual features an agent uses to selectively activate behaviors.

Definition 1: ra and rb, are absolutely behaviorally
equivalent iff they select the same behavior in every
perceptual state.

In complex systems with perhaps thousands of states
and hundreds of actions it may also be useful to provide a
scale of equivalence. This would allow substantially similar
agents to be grouped in the same cluster even though they
differ by a small amount. The approach is to compare two
robots, ra and rb, by integrating the differences between
their responses, j �a(i) � �b(i) j over all perceptual states i.
If the action is a single-dimension scalar, as in a motor cur-
rent for instance, the difference can be taken directly. How-
ever, complex actions like wander and acquire are treated as
nominal values with response difference defined as 0 when
�a(i) = �b(i) and 1 otherwise. This approach is often used
in classification applications to quantify difference between

nominal variables (e.g. eye color, presence or absence of a
tail, etc.). Using this notation, a simple behavioral differ-
ence metric can be defined as:

D
0(ra; rb) =

1

n

Z
j �a(i)� �b(i) j di (4)

or for discrete state/action spaces:

D
0(ra; rb) =

1

n

X
i

j �a(i)� �b(i) j (5)

where 1

n
is a normalization factor to ensure the difference

ranges from 0 to 1. In the case of the discrete sum, n corre-
sponds to the number of possible states. If ra and rb select
identical outputs (�a(i) = �b(i)) in all perceptual states (i),
then D0(ra; rb) = 0. When ra and rb select different out-
puts in all cases D0(ra; rb) = 1. In the numerical taxonomy
literature, this difference is called the mean character dif-
ference [SS73]. The calculation parallels the idealized eval-
uation chamber procedure introduced earlier (Figure ??).

Equations 4 and 5 weigh differences equally across all
perceptual states. This may be problematic for agents that
spend large portions of their time in a small portion of the
states. Consider two foraging robots that differ only in their
reaction to blue attractors. If, in their environment, no blue
attractors are present the agents would appear to an observer
to have identical policies.

There may be other important reasons certain states are
never visited. In learning a policy, for instance, the robots
might discover in early trials that certain portions of the
state space should be avoided due to large negative rewards.
Because these portions of the space are avoided, the agents
will not refine their policies there, but avoid them entirely.
It is entirely possible for the agents to differ significantly
in these portions of the space even though they may appear
externally to behave identically.

To address this, the response differences in states most
frequently visited should be emphasized while those that are
infrequently experienced should be de-emphasized. This
is accomplished by multiplying the response difference in
each situation by the proportion of times that state was vis-
ited by each agent (pi

a
+ pi

b
). Formally, behavioral differ-

ence between two robots ra and rb is defined as:

D(ra; rb) =

Z
(pia + pib)

2
j �a(i)� �b(i) j di (6)

or in discrete spaces

D(ra; rb) =
X
i

(pia + pib)

2
j �a(i)� �b(i) j (7)

When ra and rb select differing outputs in a given situation,
the difference is normalized by the joint proportion of times
they have experienced that situation.
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7 Conclusion

This work is motivated by the idea that behavioral diver-
sity should be evaluated as a result rather than an initial con-
dition of multirobot experiments. Previously, researchers
configured robot teams as homogeneous or heterogeneous
a priori, then compared performance of the resulting teams
[FM97, GM97, Par94]. That approach does not support
the study of behavioral diversity as an emergent property
in multirobot teams.

Defining behavioral diversity as an independent rather
than dependent variable enables the examination of hetero-
geneity from an ecological point of view. How and when
does diversity arise in robot teams interacting with each
other and their environment? This work provides the nec-
essary quantitative measures for this new type of investiga-
tion.

In this paper we introduce a mathematical definition of
agent difference that can be used to group agents accord-
ing to similarity. The grouping (or clustering) of agents is
parameterized by h, a limit on how different agents can be,
yet still be grouped in the same cluster. An overall diversity
metric, hierarchical social entropy may then be computed
using the difference metric, h, and clustering algorithms
originally developed by biologists for taxonomic classifi-
cation.
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Developmental Performance
Metrics for the Evaluation of
Artificial Intelligence - A Proposal

Abstract

This paper proposes evaluation metrics for artificial intelligence that are based on two
assumptions: that the Turing Test provides a sufficient subjective measure of machine
intelligence, and that a behaviorist approach is necessary to achieve true artificial
intelligence.

Introduction

Artificial Intelligence: definition precedes evaluation

The artificial intelligence (AI) field has strayed very far from its original interpretation by its
unofficial founder, Alan Turing. Turing, who suggested a strict criterion for “intelligence”,
devised what came to be known as "The Turing Test", by which a computer program is
said to be “intelligent” if (and only if) it “fools” a human into believing it is human. In the
philosophical journal Mind (1950), Turing1 posed the question "Can a Machine Think?" His
answer was that if the responses from the computer were indistinguishable from those of a
human, the computer could be said to be thinking.

Despite the strict criterion suggested by Turing, AI researchers diverged in multiple
directions of inquiry. Today, referring to “The AI field” could mean a variety of topics
including but not limited to intelligent agents, chatterbots, pattern recognition, voice
recognition, machine learning or expert systems. AI applications include applications in
medicine, financial investing, computer games, business, and manufacturing. Some even
consider word-processing software or home appliances as AI. The field is currently in a
contentious state. Even though important work has been conducted in terms of
sophistication and expertise of programs, the vision that motivated the birth of the AI field
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is not yet fulfilled: there is neither sufficient cooperation nor agreement among its
researchers.

The unfortunate result of this trend is that true advancement is inhibited. We believe,
however, that a paradigm shift is inevitable. With this in mind, we propose to establish new
standards and renew original concepts in an attempt to unify the field and establish
evaluation standards.

In this paper we shall demonstrate that Turing’s measure of artificial intelligence is indeed
an appropriate method of evaluation. We show that this is particularly true when
behavioristic approaches are applied to AI. Further, we maintain that a developmental
approach is a necessary prerequisite for the emergence of true AI, and we show that it
has proved successful in other fields. We then introduce our proposed evaluation metrics,
and conclude with speculation about future progress in AI.

Renewing the definition:  Turing was right.

The Turing Test

In 1950, Turing described the imitation game, nowadays referred to as the Turing Test,
whereby an interrogator must determine which of two subjects is a human being, and
which a computer program. Turing concluded that an inability on the part of the
interrogator to reliably make a correct determination is indicative of intelligence on the part
of the computer program.

The Turing Test is an appealing measure of artificial intelligence because, as Turing
himself writes, “it has the advantage of drawing a fairly sharp line between the physical
and the intellectual capacities of a man”.

The Loebner Contest, held annually since 1991, is an instantiation of the Turing Test2. In a
recent thorough review of conversational systems3, Hasida and Den emphasize the
absurdity of performance in the Loebner competition. They assert that a Turing test
requires that systems "talk like people" and since there is currently no system to meet this
requirement, ad hoc techniques make little contribution in advancing dialog technology.

We concur with Turing’s methods and therefore our approach equates Artificial
Intelligence with conversational skills. We further believe that engaging in a domain-
unrestricted conversation is the most critical evidence of the existence of intelligence.

We believe that only an intelligent being can classify another as (also) intelligent and so
we follow Turing’s assertion that a computer program is “intelligent” if (and only if) it “fools”
a human into believing he or she is conversing with another human.

Turing's Child Machine

Turing concluded his classic paper by theorizing on the design of a computer program that
would be capable of passing the Turing Test.  He correctly anticipated the difficulties that
AI would face in the decades following his death, writing that “instead of trying to produce
a program to simulate the adult mind, why not rather try to produce one which simulates
the child's? If this were then subjected to an appropriate course of education one would
obtain the adult brain”.



3

Turing regarded language as an acquired skill, and recognized the importance of avoiding
hard-wiring the computer program wherever possible. He viewed language learning in a
behavioristic light, and believed that the language channel, narrow as it may be, is
sufficient to transmit the necessary information, such as orders, rewards, and
punishments, which the child machine requires in order to acquire language.

Turing wrote that an important feature of a learning machine is that its teacher will often be
very largely ignorant of what is going on inside, although he may still be able to some
extent to predict his pupil's behavior.

It is indeed unfortunate that this promising line of work was mostly abandoned by the AI
community. Today we find ourselves at a crossroads - a paradigm shift is in the air. Many
AI researchers are returning to the behaviorist approach that Turing suggested.

Current approaches to conversational systems

Contrary to Turing’s prediction, no true conversational systems have yet been produced
and none has passed an unrestricted Turing Test. The traditional approach to
conversational system design has been to equate language with knowledge, and to hard-
wire rules for the generation of conversations. This approach has failed to produce
anything more sophisticated than domain-restricted dialog systems. Such systems lack
the kind of flexibility, openness, and learning capabilities that are the essence of human
conversational skills. As far as human-like conversational skills are concerned – no
system has gone beyond toddler level conversation, if at all.

Since the 1950s, the field of child language research has undergone a revolution inspired
by the works of Chomsky (1957)4 on transformational grammar on the one hand and the
work of Skinner (1957)5 on the behaviorist theory of language on the other. Computational
implementations based on the Chomskian philosophy incorporate rules for generating
dialogues and conversations and have yielded disappointing results. It is our thesis that
true conversational abilities are more easily obtainable via the currently neglected
behaviorist approach.

Behaviorism and AI

Child language acquisition: the modern behavioristic approach

Behaviorism focuses on the observable and measurable aspects of lingual behavior.
Behaviorists search for observable environmental conditions known as stimuli that co-
occur and predict the appearance of specific verbal behavior or responses  (Owens,
1996)6. This is not to say that behaviorists deny the existence of internal mechanisms, and
they do recognize that studying the physiological basis is necessary for a better
understanding of behavior. What behaviorists object to are internal structures or
processes with no specific physical correlate that are inferred from behavior. Thus,
behaviorists object to the kind of grammatical structures proposed by linguists and claim
these only complicate explanations of language acquisition (Zimmerman, & Whitehurst,
1979)7. Their approach is functional rather than structural. They focus on the functions of
language, the stimuli that evoke verbal behavior, and the consequences of language
performance.
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Skinner argues that psycholinguists should ignore traditional categories of linguistic units
but should treat language as they would any other behavior, search for the functional units
as they naturally occur, and then discover the functional relationship that predicts their
occurrence. Behaviorism is focused on reinforced training since it regards language as a
skill that is not essentially different from any other behavior. Speaking (and understanding
speech) must be controlled by stimuli from the environment in the form of reinforcement,
imitation, and successive approximations to mature performance (sometimes referred to
as “shaping”). Skinner takes the extreme position that the speaker is merely a passive
recipient of environmental pressures, having no active role in the process of language
behavior or development.

According to behaviorists, changes in behavior are explained through the connection or
association of stimuli in the environment and certain responses of the organism. The
process of forming such associations is known as classical conditioning. For example, the
word ‘milk’ is learned when the infant’s mother says ‘milk’ before or after feeding, and this
word becomes associated with the primary stimulus (the milk itself) to eventually elicit a
response similar to the response to the milk. Once a word or a conditioned stimulus (CS)
elicits a conditioned response (CR), it can become an unconditioned stimulus for
modifying the response to another conditioned stimulus. If the new CS ‘bottle’ frequently
occurs with the word ‘milk’, it may come to elicit a response similar to that for the word
‘milk’. This way, words stimulate each other and this classical conditioning accounts for the
interrelationship of words and word meanings. Classical conditioning is more often used to
account for the receptive side of language acquisition.

Whereas classical conditioning accounts for the associations formed between arbitrary
verbal stimuli and internal responses or reflexive behavior, operant conditioning is used to
account for changes in voluntary, nonreflexive behavior that arise due to environmental
consequences contingent upon that behavior. Operant conditioning is used to account for
the productive side of language acquisition, being concerned with changes in behavior
that arise from reactions to either rewards or punishment from the environment. All
behavioristic accounts of language acquisition assume that children’s productive speech
develops through differential reinforcers and punishers  supplied by the environmental
agents, in a process known as shaping. Children’s speech that most closely resembles
adult speech is rewarded, whereas productions that are meaningless are either ignored or
punished. The behaviorists believe that the course of language development is largely
determined by the course of training, not maturation. Some behaviorists explain that
language is processed as word-sequences or response-chains with the words themselves
serving as stimulus for other successive words. These word chains are also known as
Markov models of sentences (Mowrer, 1960)8. Imitation is another important factor in
language acquisition because it allows a shortcut to mature behavior without the laborious
shaping of each and every verbal response. It can be an exact copy of observed behavior
but is not limited to being an exact one. The process of imitation itself becomes reinforcing
and enables rapid learning of complex behaviors.

The time it takes children to acquire language is viewed as a consequence of the
limitations of the training techniques rather than of the maturation of the child. Behaviorists
do not typically credit the child with the knowledge of rules, with intentions or meanings, or
with the ability to abstract important properties from the language of the environment.
Rather, certain stimuli evoke and strengthen certain responses in the child. The sequence
of language acquisition is determined by the most salient environmental stimuli at any
point in time, and by the child’s past experience with those stimuli. The learning principle of
reinforcement is therefore taken to play a major role in the process of language
acquisition.
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The Developmental Model

Application to AI

We maintain that a behaviorist developmental approach to language could yield
breakthrough results in the creation of artificial intelligence. Programs can imitate, extract
implicit rules, learn from experience, and can be instilled with a drive to constantly improve
their performance. Language acquisition can be achieved through successive
approximations and positive and negative feedback from the environment. Instilled with
these capabilities, programs should evolve through critical developmental language
acquisition milestones in order to reach adult conversational skills. Language acquisition
milestones are both quantifiable and descriptive measures and systems could be
evaluated using these measures, and could be assigned an age or a maturity level beside
their binary assessment as ‘intelligent’ or ‘not intelligent’.

Success in other fields

Developmental principles have enabled evaluation and treatment programs in fields
formerly suffering from a lack of organizational and evaluative principles (Gleason, 19859,
Goren et al, 199610). The developmental principles have been especially useful in areas
bordering on the question of intelligence. Normative developmental language data
enabled the establishment of diagnostic scales, evaluation criteria, and treatment
programs for developmentally delayed populations. In other areas, such as schizophrenic
thought disorder, in which clinicians often found themselves unable to capture the
communicative problem of patients in order to assess their intelligence level or cognitive
capability, let alone to decipher medication treatment effects on the patients, the
developmental metrics proved a powerful tool (Goren, 199711).

It Can Be Done

Computational language acquisition

We are interested in programming a computer to acquire and use language in a way
analogous to the behavioristic theory of child language acquisition. In fact, we believe that
fairly general information processing mechanisms may aid the acquisition of language, by
allowing a simple language model, such as the aforementioned Markov model, to
bootstrap itself with higher-level structure.

Markov Modeling

Claude Shannon, the father of Information Theory, was generating quasi-English tests
using Markov models in the late 1940's12.  Such models are able to predict which words
are likely to follow a given finite context of words, and this prediction is based on a
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statistical analysis of observed text.

Using Markov models as part of a computational language acquisition system allows us to
minimize the number of assumptions we make about the language itself, and to eradicate
language-specific hard-wiring of rules and knowledge.

To date, conversation systems based on this approach have been thin on the ground 13,
although the technique has been used extensively in related problems, such as speech
recognition, text disambiguation, and data compression14.

Finding Higher-Level Structure

Shannon's Information Theory may be applied to the sequence of predictions made by a
Markov model in order to find sequences of symbols and classes of symbols that
constitute higher-level structure.  For example, a character-level Markov model inferred
from English text can easily segment the text into words, while a word-level Markov model
inferred from English text may be used to ’discover' syntactic categories15.

This structure, once found, can be used to bootstrap the Markov model, allowing it to
capture structure at even higher levels.  It is our belief that combining this approach with
positive and negative reinforcement is a sensible way of realizing Turing's vision of a child
machine.

Proposed Evaluation Metrics

Our evaluation proposal to measure the performance of a conversational system is
composed of both subjective and objective components.

Objective developmental metrics

The ability to converse is complex, continuous, and incremental in nature and thus we
propose to add incremental metrics to complement the subjective impression of
intelligence. Some examples of developmental parameters, which increase quantitatively
with age, are:

§ Vocabulary size: the number of different words spoken.
§ Mean length of utterance: the mean number of words spoken per utterance.
§ Response types: the ability to provide an appropriate sentence form with the
relevant content in a given conversational context and the variety of forms used.
§ Degree of syntactic complexity: for example, the ability to use embedding to
connect between sentences and convey ideas.
§ The use of pronominal and referential forms: the ability to use pronouns
and referents appropriately and meaningfully.

Each stage of language acquisition sets the foundation for the next and growth is
progressively measured.
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The added value

The incremental measures provide an evaluation of progress in conversational capabilities
over time. The descriptive increments enable capturing specific aspects of conversational
capabilities. Moreover, they enable understanding the nature of the critical aspects that
lead up to the ultimate goal: achieving a subjective judgment of being ‘intelligent’.

The challenge in creating maturational criteria is in combining the parameters into a
meaningful profile or evaluation score. One might expect discrepancies in the
development of the different aspects of conversational performance. For example, some
systems may utter long, complex syntactic sentences, typical of a child at age 5 or above,
but may lag in terms of the use of pronouns expected at that age. The weighting of the
various maturation parameters is far from trivial.

The subjective component

We do not claim that the objective evaluation should take precedence over the subjective
one, just as we do not judge children on the basis of objective measures alone. A
subjective judgment is an important, if not determining criterion, in an overall evaluation.

The judgment of intelligence is in the eye of the beholder. Human perception of
intelligence is always influenced by the expectation level of the judge towards the person
or entity about to be judged (Obviously, intelligence in monkeys, children, or university
professors will be judged differently). Adding objective metrics for evaluating maturity level
will set up the right expectation level for a valid subjective judgment of intelligence.

Accordingly, we propose developmental metrics to establish a common denominator
among various conversational systems, so that the expectation level from these systems
will be realistic. Given that subjective impression is at the heart of the perception of
intelligence, the constant feedback from the subjective evaluation to the objective one will
eventually contribute to an optimal evaluation system for perceiving intelligence.

By using the developmental model, computer programs will be evaluated to have a
maturity level in relation to their conversational capability. Programs could be at the level of
toddlers, children, adolescents, or adults depending on their developmental assessment.
This approach enables not only evaluating across programs but also evaluating the
progress within a given program.

Conclusion and Future Work

We submit that a developmental approach is a prerequisite to the emergence of intelligent
lingual behavior, and to the assessment thereof. This approach will help establish
standards that are in line with Turing's understanding of “intelligence” and will enable
evaluation across systems.

We maintain that the proposed paradigm shift in understanding the concepts of “Artificial
Intelligence” and “Language” will result in the development of groundbreaking technology
that will pass the Turing Test within the next 10 years.
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ABSTRACT

General scientific and logical premises lurking behind the art
of measuring complex phenomena, specifically intelligence, are
explored via fuzzy logic, probability theory, differential equations,
thermodynamics, generalized dimensional analysis, philosophy and
psychology. 

KEYWORDS: generalized dimensional analysis, path functions,
fuzzy operators, fuzzy logic, thermodynamics, extensive variables,
intensive variables

0. THERMODYNAMICS, OSs, AND TURING
 
Thermodynamics is probably the classical and ideal example
of a system-theoretic point of view, and one that is built on the
twin concepts of state and process. Furthermore, it is probably
the only link from physics to the study of living things, which
are most likely the most complex things which humans will
ever have to study.  The physical sciences are the easy sci-
ences; it is the life sciences that are the hard sciences.[1]
Unfortunately, physical scientists work with powerful tools,
and life sciences have restricted themselves to working with
much less powerful tools[1].  

Thermodynamics is a perfect example of a science
whose development lead to the improvement of the measure-
ment of a fundamental dimension of physics. It was not until
Lord Kelvin saw some inconsistencies that the concept of an
‘absolute’ temperature scale was created. In measurements of
things such as length, mass, or time we can easily envision the
concept of ‘zero’. But it is not so with temperature. Nobody
knew what the lowest obtainable temperature was. In the argu-
ments in the philosophy of science there exist data-first and
theory-first schools. Here we have a case in which both are
iteratively used. The problem of intelligence is most likely to
follow this pattern of development. If the problem is in an area
that has a well-developed theory, we must try to explain the
phenomenon in terms of the developed theory. It is only when
we cannot that we can start thinking about a new theory, and
this requires datamining techniques.

An Operating System (OS) is a very complex object. It
has been said that “I may not know what an OS is but I can rec-
ognize one, when I see one!”.  The same thing may be said
about intelligence, (or cognitive ability or any of the other

related words such as awareness, consciousness, or autonomy,
or even life.) The Artificial life newsgroup (alife) skipped try-
ing to define life or artificial life. The only serious effort in this
direction was made by Alan Turing. He essentially formalized
the saying about the OS into intelligence. We may not know
what ‘intelligence’ is but we know how to recognize one when
we see one.  Apparently when we talk about intelligence, we
are talking about ‘human kind’ or ‘human type’ or ‘human
level’  intelligence, or at least ‘living thing’ kind (type/level) of
intelligence. We can say things about this without being able to
define it precisely. It is precisely about this intelligence that
Turing was referring to when he wrote about what is now
referred to as the ‘Turing Test’.  He understood all the prob-
lems that involve discussions of this thing called intelligence
many decades ago and offered his ‘Gordian Knot’ solution.
Sometimes thinkers are unable to break through the boundaries
of what has been created. Whitehead claims that Aristotle hin-
dered the development of science for 2,000 years because
nobody was courageous enough to break through the bound-
aries of the box for the sum total of all knowledge for human
kind.

                 
1. MEASUREMENT THEORY I 

Normally, in the physical sciences, the possibility that an
instrument may be capable of high precision while not being
able of high accuracy does not occur to people. It can only
occur if the instrument is broken. If the instrument is a very
simple one (such as a ruler) we’d see immediately if there was
something seriously (or obviously) wrong. If the instrument is
a highly complex one, then there would be various self-tests.
However, in the social/life sciences creation of ‘instruments’ is
an art. It is quite possible for the instrument to be reliable (pre-
cise) but not valid (not accurate) or vice versa. For example, a
psychologist might decide to create a questionnaire which he
claims measures ‘hostility’.  The same person taking this test
(the questionnaire) might obtain different scores at different
times. So habituated are we to measuring things in this modern
age that we scarcely give thought to the possibility that what is
being represented as a number may be meaningless. That is the
validity of the measurement i.e. that the measurement or metric
actually measures what we intend to measure. In physical mea-
surements there is usually no such problem. Validity also
comes in different flavors such as construct-validity, criterion-
related validity, and content-validity. Reliability refers to the
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consistency of measurements taken using the same method on
the same subject. (Please see Figure 1)

2. MEASUREMENT THEORY II

We often need to make things comparable to each other. We
call this normalization.  That is most easily done if we use
numbers. For example, one way to normalize test grades is
simply to divide every grade by the highest grade in class. This
guarantees that the highest grade in class is 1.0.  In order to be
able to compare one boxing match to another a standard scor-
ing system is used in which the same number of referees are
used to score the bout, and for each round at least one boxer
must be given 10 points. In Rasch measurements, we use

                                                                             (1)

where P=Prob{answering correctly}, =ability, and =diffi-
culty of question. However, this is not scale-free. It would
probably be better to use something like

                 or                            (2)

In this case it is only necessary that both  and  be measured
on the same scale (somehow). Obviously, it would be best for
all purposes to use numbers in the standard interval [0,1].

3. MEASUREMENT THEORY III

Before we try to normalize quantities we should know what
kinds of measurements we have. They determine if we can mul-
tiply those numbers, add them, or can merely rank them etc. Ac-
cordingly measurements are classified as: (i) Ratio scale, (ii)
Interval scale, (iii) Ordinal scale, or (iv) Nominal scale.

Absolute (Ratio) Scale: The highest level of measure-
ment scale is that of ratio scale. A ratio scale requires an abso-
lute or nonarbitrary zero, and on such a scale we can multiply
(and divide) numbers knowing that the result is meaningful.  

Interval Scale:  The Fahrenheit and Celsius scales are in-
terval scales. The differences on these scales are meaningful but
ratios are not. That is what Kelvin found out, and that is what

the absolute temperature scale is about. When measuring things
such as intelligence, consciousness, awareness, or even autono-
my, or hostility, we have no guarantee that we are measuring
any of these on an absolute scale. There must be some other
guidelines. One of the guidelines is obviously the study of var-
ious scales. In the intelligence game, psychologists have mainly
relied on the central limit theorem in ‘hoping’ that intelligence
is a result of many many different things adding up to create a
Gaussian density. Thus they have contrived to make sure that
test results are Gaussian.

Ordinal Scale: The next level on the measurement scale
is the ordinal scale, a scale in which things can simply be ranked
according to some numbers but the differences of these num-
bers are not valid. In the ordinal scale we can make judgements
such as A>B. Therefore if A>B and B>C, then we can conclude
that A>C. In the ordinal scale there is no information about the
magnitude of the differences between elements. It is possible to
obtain an ordinal scale from questionnaires. One of the most
common, if not the most common is the multiple-choice test,
called the Likert scale, which has the choices: extremely likely/
agreeable, likely/agreeable, neutral, unlikely/disagreeable, and
extremely/very unlikely/disagreeable.

Nominal Scale: The lowest level of measurement and the
simplest in science is that of classification or categorization. In
categorization we attempt to sort elements into categories with
respect to a particular attribute. It ranks so low on the scale that
it was added to the measurement scales later. Even an animal
that can tell food from nonfood can be said to have learned or
can be said to know about set operations instinctively. 

The most basic and fundamental idea underlying these
scales which is not even mentioned, and which is extremely im-
portant for measurement of complex phenomena in the life sce-
inces, is that in the final analysis, it is the human sensory organs
that are the beginnings of all measurement. In the measurement
of temperature, although a difference scale was easy to set up
via the human sensory organs (and induction), it took theory
and scientists to obtain an absolute scale for temperature. To ob-
tain a difference scale the only thing necessary was for humans
to note that the liquid in the glass went up when it was hotter.
There was no way to know which was more hot and which less
hot except via our naked senses. 

This is/was as basic as knowing the difference between
which of two sticks is longer than the other or which of two
weights is the heavier one. Similarly in the measurement of in-
telligence, the final arbiter is still the naked human senses. Hu-
mans must make up the tests and decide which is more
intelligent, say a chimpanzee or a dog. There can be no other
way to proceed. The genius of Turing was that he realized this
immediately. Therefore, Turing’s basic intuition is correct. We
might not know what intelligence is but we can recognize it
when we see it. Secondly, we should probably turn to nature to
find examples and a hierarchy or scaling of intelligences. It
would not be off the mark to accept that all living things are in-
telligent to a degree, and that EI (Encephalization Index) is ba-
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sically a good scale on which to compare the intelligences of at
least some living organisms.[2]

4. MEASUREMENT THEORY IV

Before we can even think about whether our measurements are
on an absolute or difference scale we have to make sure that
the objects that we deal with are quantifiable in some way and
that we can measure them (with numbers naturally). Our han-
dle on the problem  is that the things we measure in physics
(and hence engineering) come in fundamental dimensions. For
example, dimensions of that particular branch of physics called
mechanics consists of M {mass}, L {length}, and T {time}.
For electrical phenomena we need one more dimension, Q
(charge), and for thermal phenomena we need θ (temperature).  

Then we can entertain the thought of using dimensional
analysis for complex phenomena which is a method of reduc-
ing the number and complexity of experimental variables
which affect a given physical phenomenon, using a sort of
compacting technique. If a phenomenon depends upon n
dimensional variables, dimensional analysis will reduce the
problem to only k dimensionless variables, where the reduction

=1,2,3 or 4 depending on the problem. Since these new
dimensions are products/ratios of the old variables to various
powers, the new dimensionless space has nonlinearly twisted
and compacted the old problem in a way in which we can see
regularity. 

These ideas have been put to good use in biology [3].

For example, the mass of an animal grows proportional to L3

but its surface area is only proportional to L2.  Thus, as animals
get larger they have to have larger cross-sections of bones to
support all that weight. So an elephant does not look just like a
large sheep. These ideas have to be taken into account when
prototypes, say, airplanes are tested in wind tunnels.  Many
other things having to do with scaling of living things such as
metabolism, oxygen consumption, heat exhaustion, cooling
etc. can be found in  Schmidt-Nielsen[3]. For example, one
way to make different animals’s brains comparable is to com-
pare not their brain capacities but the ratio of their brain mass,
b, to their body mass B.  Until recently, there was no method
that could cluster the variables in similar ways as above so that
nonlinear dimensional compaction was not available, but now
there is a generalized data-driven method.[4]

5. PHILOSOPHY

Why do we do philosophy? One reason is because we do not
want to ‘re-invent the wheel’. If philosophers have already
thought about this topic, we should at least be aware that
thought has been expended and  results have been achieved.

Operationalism: The problem of what is being mea-
sured in quantum mechanics was solved during the early part
of this century by ‘operationalism’ an idea (by Bridgeman) that

the operations that are being executed define what is being
measured. As long as everyone does the same thing, we are
guaranteed that we all measure the same thing. In the measure-
ment of something like intelligence, obviously, the problem of
validity remains.

Quality vs Quantity: Thermodynamics,  gave us the
concept of extensive and intensive variables.  It is often
remarked in narratives that a fundamental difference exists
which can be characterized by the words ‘quantitative’ vs.
‘qualitative’. Often what is meant by the word qualitative is
"intensive" since concepts often characterized as a quality can
also be quantified. If a system consisting of a lot of 10,000 TVs
is split into two sets at random, the quality of the two sub-
systems will equal each other and  the quality of the TVs of the
whole original system. A state of a system is characterized by a
set of parameters. If we split a thermodynamic system (say a
container of gas) in half some of the parameters will obey

 and others will obey . The former

(upper case) are extensive parameters, and the latter intensive
parameters.  

Open vs Closed: The concepts open vs closed (endoge-
neous vs exogeneous) are obviously very closely related to
each other. In a closed system there can be no such thing as an
exogeneous variable. At the same time, in general there is
really no accurate or clear definition of what an open system is.
In thermodynamics from where these ideas are probably bor-
rowed, an open system is one which exchanges mass with its
surroundings. A closed system may exchange heat, and do
work on its surroundings, or have work done on it by its sur-
roundings. Additionally, heat and work are processes. In other
words, they are not point functions, but path functions. 

In general in mathematical modeling via differential
equations, the surroundings (forcing or source term) is every-
thing that does not have the system variable in it and usually
put on the rhs. However, when these concepts are specifically
applied to intelligence, we have to clarify what it is that the
system exchanges with its surroundings. The concept can
apply to both exchanging data and or information with its sur-
roundings. At the same time, the word “open” may be used to
refer only to the problem at hand (i.e. if the problem is “open-
ended”), but then it is not about generalized intelligence but
about a specific problem. To generalize it we will then be
forced to think about what little we know about how the brain
does its work or how to generalize from the mathematical
methodology that presently exists (i.e. logic, probability the-
ory, etc). [1]

Many-as-One:  The most fundamental such concept
according to modern math is ‘set’ and forms the basis of logic,
where philosophers are at home. This idea is the building block
of all systems. A body is not just a parts list although it is com-
prised of many subsystems thus is not merely a set. We have
many ways in mathematics of treating many things as one.   A
tensor is a general object of any degree. A zero dimensional
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tensor is a scalar. A one dimensional tensor is a vector or an n-
tuple. A two dimensional tensor is called a matrix. In addition
to this, from computer science we have the latest, and more
flexible concept of hierarchical ordering via OOP (object-ori-
ented programming) in which an object is a set of parameters
without necessarily being merely a set or a vector.

Parallel  vs Serial (sequential): This is one idea that
occurs quite often. Some problems are parallelizable. For
example, to dig a large ditch if we hire 100 workers as long as
they do not interfere with each other, the ditch-digging will go
at a rate 100 times as fast as before. However, if I want to send
a message with a messenger, it does not matter if we use 100
messengers. The increase in the number of messengers might
increase the reliability but will not affect the speed of the deliv-
ery. But parallelity also has to do with simultaneity (not always
in time), choices, and substitutability, and logic.[7]

Trade-offs and Logic: We can sometimes trade-off
something for something else in which case these things are
substitutes of some kind. This idea shows up in logic as a logi-
cal-OR (co-norm). In the psychology and cognitive science lit-
erature, many different components of intelligence are posited.
It is quite possible that some of these intelligences are com-
posed of other more primitive types. If so, then are some of
these substitutes for each other?

6. PSYCHOLOGY & COGNITIVE SCIENCE

Obviously throughout most of the century those who have
worked on the nature and measurement of intelligence (almost
always human intelligence) have been psychologists. They
have had recourse to and benefited from methods and argu-
mentation in both philosophy and physics. The kinds of ques-
tions with which they have toiled can be summarized in
modern (and mathematical) terms as:

i) What kind of a quantity is intelligence? Is it binary or
measurable on some scale? What kind of a scale is appropriate?
Is it an ordinal, interval, or an absolute (ratio) scale?

ii) Is it an additive function of its constituents, the most
important ones for purposes of simplification being hereditary
(nature) and environmental (nurture)? Or is it a multiplicative
function? Is it logarithmic function, an exponential function or
a polynomial function of its variables? 

iii) Is it a vector/tensor or a scalar (Spearman’s g)? In
other words, can a single number be produced from many num-
bers which is meaningful? Is there a hierarchy of intelligences,
some of which subsume some of the others?

iv) Is it a state or a process ? In other words is it a point
function, or a path function? Is it a quality or a quantity? In other
words, is it an extensive variable or an intensive variable?

v) The nature vs nurture problem: Are the differences in
intelligence among humans due mostly to heredity or environ-
ment? 

There is a related (and incorrectly stated) version of (v)
which is “Is intelligence mostly genetic?” The answer is quite
plainly that intelligence is mostly genetic if intelligence is dis-
cussed in its most general form, that is including machine intel-
ligence and animal intelligence. However the answer to (v) is
much more complicated.[5]

An almost perfect example of a vector of cognitive sci-
ence is color. We all know what colors are but they would be
virtually impossible to explain to someone who was congeni-
tally blind. If we did attempt to "explain" colors by explaining
that "black is the absence of color and white is a mixture of all
the colors" it is likely that the blind person would think of col-
ors as what we call "gray scale". The analogical question is
whether the components of intelligence that psychologists
have posited are like colors in that they ‘seem’ as if they are
‘unique’ objects or is there a single number which we may
obtain from the components.[8] Is this single number like col-
ors or is it like the gray-scale?

7. COMPLEXITY AND HIERARCHY

The concept of layering or hierarchy is one of the most basic in
the universe. Whereas hierarchy requires more detailed expla-
nation the concept of layering is easier to envision and observed
all over the world, at a very coarse-resolution. We use pictures
of all sorts (as in Figure 2).

What better example than knowledge? Data is raw. Informa-
tion is data that is meaningful to an intelligent entity. Knowl-
edge must be compressed information. The only way to
compress information is via exploiting regularities and pat-
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terns. Since mathematics is the study patterns, and regularities
of all kinds, it is clearly the best tool with which to do science.
Many more examples of layering can be found [1],[5],[6].

Thus the scientificity (intensity) of knowledge must be mathe-
matics. Is it possible to measure intelligence separate and apart
from knowledge?  Do we want to weight some kinds of knowl-
edge more heavily than others?

8. DISTANCE & MEASUREMENT         
       

The main problem here is whether, after having gone through
the problem of identifying the various components of intelli-
gence, we should multiply them or add them to create a single
number called intelligence. Therefore two prototypical choices
for distance are

   

                                     (3)

                                        (4)

Obviously, in Eq (4) every component must be nonzero. There
are good reasons why it is so. If normal functioning of a human
depends on having absolutely no genetic defects, and if the
intelligence of a human is determined by n genes, then if any of
them is defective it should effect the score in the same way that
the reliability of a composite is the product of the reliabilities
of its components. In this sense, then the factors are analogous
to probabilities. 

This is also how we humans apparently tend to evaluate
intelligence, as can be seen in the schizoid labeling of the con-
dition known as idiot-savant. Being apparently superhuman in
one aspect of intellectual activity is not sufficient to escape the
label ‘idiot’. It is said that an expert knows everything about
nothing whereas a generalist knows nothing about everything.
In an extension of this, then, today’s experts (i.e. engineers) are
idiot-savants. Their social IQ is said to be low. Programs like
Maple, then, are also idiot-savants. 

9. AVERAGE-IZATION

Consider the problem of being a juror in a beauty pageant. We
will be forced to use a kind of scale in Eq. (5) (below) 

                    (5)

where the  are the means. For example, the features/proper-

ties (of the vector x) may be nose length, skin color, lip thick-
ness, fatness, etc. We will not want to vote for those with lips
too thin or too thick,  with noses that are too long, or too short,
legs too thin or too thick, skin too pale or too dark. In other
words, we are not looking for the minimum or the maximum
but rather the most perfect average there is (with some cave-
ats). This is a different kind of logic, triage logic [10].

Then, the human-kind of intelligence, if it is going to
resemble what we humans normally think about perfection
(apparently) should be measured via 

                          (6)

where the {x} are the various attributes of intelligence. The
Turing test is probably for this kind of intelligence. For exam-
ple, a machine that can solve differential equations and multi-
ply 20 by 20 matrices in a jiffy (such as Maple, a Computer
Algebra System) would flunk the Turing test. A human would
know that a normal human (or maybe even an abnormal
human) cannot do that. Therefore, the machine that could pass
the Turing test would either have to be designed dumbed-down
or it would have to learn to deceive. There are other things
machines can do very quickly that humans cannot accomplish. 

Thus the ‘measure’ above would show that such an
entity could not be human (ceteris paribus, of course). In other
words, as long as the machine is able to do the other things
more or less as a human, then overachieving (outdoing
humans) in one of the dimensions of the vector space would
mark it as a machine. 

Exactly the same would apply in some other capability
such as being able to lift a few tons, swimming or running at
superhuman speeds etc. For machines, then locomotion, would
also be treated as part of intelligence. However, since even
lower animals (less intelligent than us) can move around, it
should not contribute much to the measurement of intelligence. 

There are some pyschologists who want to include
many human capabilities, such as physico-kinetic intelligence
(i.e. physical ability) in the intelligence equation. Therefore,
this ‘autonomy’ capability of animals/machines may also be
considered to be a part of intelligence. We may take those that
have been posited by psychologists as a starting point keeping
in mind that some of them may really be substitutes for each
other so that the measurement might be more complicated. 
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10. MORE SOPHISTICATION

Consider the simple problem of nutrition. Suppose we can cre-
ate a balanced diet from the few foods available from three
separate food groups; meat (protein), carbohydrates, and vege-
tables as shown below.

In terms of circuit analysis (which can be thought of in terms
of Boolean algebra, [9] it is clear that the parallel lines are
about choices (and thus lack of constraints) and therefore rep-
resent logical-OR (disjunction), whereas the seriality/sequenti-
ality denotes a logical-AND (conjunction).  Probably the first
thing a statistician would do if faced with the problem of deter-
mining the relationship between food groups and a balanced
diet would be to try correlation-regression analysis which
would be nothing more than

                               (7)

where t=tuna, m=mutton, c=corn etc. This is really the same
kind of valuation of the problem as a weighted average. How-
ever, if we think logically then we should be considering a
function of form;               
                                                                              (8)
since we need to ingest food from all the groups. Furthermore,
since these food groups may be instantiated via specific exam-
ples, then using fuzzy logic, we should be regressing one of

                     (9a)

             (9b)

Obviously, the latter form (Eq. 9) is not only correct but will re-
sult in many products (possibly to various powers). It is exactly
this kind of products that dimensional analysis produces how-
ever it works only for problems with physical dimensions.
However, there are methods that will produce similar equations
for any problem if sufficient amount of data is available [4]. If
intelligence-measurement is at least as complex as that of prop-
er nutrition, then the simple weighted average kind of methods
which are additive will not work. In other words the regression
in Eq (7) is something like a combination of logical (or fuzzy)
ORs and ANDs. A question that comes to mind is if there are
fuzzy operators which are neither OR nor AND but something
like both and exactly like neither. The special functions [11]

                                                             (10a)

                              (10b)

or others similar to these can be used in cases in which we are
not sure if additive or multiplicative models should be used.
One can show that [11]

                                               (11a)

                                                  (11b)

Therefore the operator (fuzzy t-co-norm)

                           (11c)

is neither a norm (intersection) or conorm (union) but a fuzzy

operator or a fuzzy norm since it is a norm for  and a

conorm for . Some of the present day attributes of

intelligence posited by psychologists probably are substitutes
for each other and thus Eq (6) might distort the measurement.
Therefore, something like Eq (9) where the additions are fuzzy
unions and fuzzy intersections will probably give better
results. The equations are readily and  intuitively
comprehensible in terms of  theory of reliability based on
probability. Fuzzification of the norm-conorm can be done for
any fuzzy logic. For example, the simple product/sum logic
given by

                                                                      (12a)

                                                         (12b)

can be easily fuzzified via

                                          (12c)

11. HUMAN INTELLIGENCE

The main problem today in human intelligence tests (and
genetics) is calculating how much of intelligence is ‘inherited’
and how much of it is learned. There are several ways in which
the model for this may be derived. One way would be to point
out general conditions which the ‘intelligence function’ must
satisfy. It should be multiplicative. It should display the
increase of intelligence in time from the time of birth. It should
converge on some limit on average for the people while being

Figure  3: Parallel or Serial Choices. The problem is actually about multi-
plication vs addition. Diagrams such as this occur in electrical circuits, Bool-
ean circuits [9], or choice making.
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allowed to fluctuate about the average rate of increase and the
limit of human intelligence. The equation

                                                               (13)

increases exponentially, and converges to a limit which is a
good approximation. We need to know what the parameters
mean, and this can be gleaned from the behavior of the solu-
tion. In Fig (4a) we see several trajectories. Some converge to
above average intelligence, and some to less than average.
Obviously the coefficient   determines this limit. 

In Fig (4b) we see a fluctuation in the rate of increase of intelli-
gence, and this is controlled by the coefficient  .  

Logically both of these parameters then should be a function of
both genetics and environment. Since we have determined that
multiplicativity is important, the model should be     

                 (14)

Integrating it once and rearranging terms we obtain the integral
equation

                                   (15a)

          with                 (15b)

which is exactly what most researchers claim, that is, intelli-
gence at time t, that is I(t), is a function of the past interaction
of intelligence with environment summed up over time from
time zero (birth) to the present time t.  The interaction is multi-
plicative as it should be, and the equation is a reasonably good
approximation over time of how living things (especially
humans) learn. The solution is

       (16)

where     which in the limit goes to

                                                                             (17)
  
If one day robots which learn from their environment are cre-
ated, similar equations will be good first order approximations.
Same probability techniques can be used on these equations,
and statistics such as ‘heritability’ can be calculated. If the
multiplication above is treated as some kind of a fuzzy inter-
section, then we can see quite clearly that the same kind of an
equation can easily ‘explain’ the existence of natural language
among living things. At the limits the equation must reduce the
crisp logic, and we can see that it does. Only in the case when
both genetic capability is there and when there is proper envi-
ronmental stimulation, does language exist. If one or the other
is missing there is no language. We can show how this equa-
tion explains what psychologists have said (in words) for a
long time. Computing the virtual variation, we obtain for the
special (and simpler case) of  

                                                                   (18)

If the environment is enriched, the corresponding increase in
intelligence depends on the genetic capability. Thus putting a
dog in school cannot give it human level intelligence. Simi-
larly, if there is a change in the genetic make-up (e.g. the dif-
ference between a chimp and a human) the change in the
intelligence depends on the environment. A human brought up
without human contact cannot walk or talk or dress up.

td
dx λ α x–( )=

α

Figure  4a : Variations in   of the Intelligence Model . α

t

λ

Figure 4b: Fluctuations in  of the Intelligence Modelλ

td
d I t( ) λG

η
E
ε

t( )I t( )+ λαG
h η+

E
e ε+

t( )=

I t( ) K t( ) λG
η

E
0

t

∫
ε

– σ( )I σ( ) σd=

K t( ) αλG
h η+

E
0

t

∫
e ε+

s( ) sd=

I t( ) Γe

λG
η

E
ε

0

t

∫ τ( ) τd

E
e ε+

s( )e

λG
η

E
ε

s

0

∫ τ( ) τd

sd
0

t

∫=

Γ λα G
h η+

=

I αE
e
G

h
=

e h α 1= = =

dI E dH⋅ H dE⋅+=



APPENDIX    
Exact Differentials and Path Functions

The distinction between the related concepts state and process
is an important one. There are mathematical definitions and
consequences of these ideas. A state (or property) is a point
function. The state of any system is the values of its state vector
(a bundle of properties which characterizes a system). If we use
these variables as coordinates then any state of the system is a
point in this n-dimensional space of properties/characteristics.
Conversely each state of the system can be represented by a sin-
gle point on the diagram (of this space). For example for an ide-
al gas the state variables are temperature, pressure, volume, etc.
Each color can be represented as a point in the 3-D space
spanned by the R, G and B vectors. Intelligence is commonly
accepted to be a state variable, i.e. a point. The scalar, Spear-
man’s g, (single number, not a vector) can be obtained from this
vector by using a distance metric. The argument that the values
of the components cannot be obtained from the scalar, g, may
be valid depending on the distance metric however, the distance
metric may be devised in a way in which the components can be
obtained from the scalar. Distance on a metric space is a func-
tion only of the end points i.e. between two states. However, the
determination of some quantities requires more than the knowl-
edge simply of the end states but requires a specification of a
particular path between these points. These are called path func-
tions. The commonest example of a path function is the length
of a curve. Another example is the work done by an expanding
gas. So is Q, the heat (transferred). In that sense work and heat
are interactions between systems (i.e. processes), not character-
istics of systems (i.e. state parameters/variables). Intuitively,
when we talk about small changes or small quantities we use the
differentials dx or δx. However the crucial difference is that al-
though there may exist a function such that 

                           (A.1)

there is no function Q, (heat) such that 

                                   (A2)

Instead we write

                                                                                               (A3)

meaning that Qab is the quantity of heat transferred during the
process from point a to point b. Similarly because the infinites-
imal length of a curve in the plane is given by

                                                             (A4)
we cannot integrate ds to obtain 

                                                                (A5)

but instead first the curve y=f(x) must be specified. Equivalent-
ly, if z is a function of two independent variables x and y, and
this relationship is given by z=f(x,y) then z is a point function.
The differential dz of a point function is an exact differential
and given by

                                                    (A6)

Consequently if a differential of form     is
given, it is an exact differential only if 

                                                                (A7)

Therefore in the mathematical function used for the simple two-
factor (nature-nurture) Intelligence Function  the environmental
path taken does make a difference in the final result which is as-
sumed to be a state function (although computed from mental
processes). 
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1. Introduction
Aspects of the research. The concept of evaluating the intelligence of systems presented

in this paper is based upon the model of intelligence outlined in [1] and the advancements in
visualization described in [2]. Since the main mechanism of intelligence is the mechanism of
generalization, it would be prudent to judge the degree of intelligence by the ability of the system to
generalize. This ability can be detected by the means of visualization. Visualization of the system
and/or the situation allows us to use the primary orientation of our visual capabilities to the
situations and/or modes of functioning based upon “gestalt” i.e. capabilities to form a harmonious
and consistent entity out of details.
We will explore the unique ability of the visualization systems to diagnose the system and/or its
state by discovering the syndrome: a group of symptoms, or diagnostic features that collectively
indicate or characterize a disease, a psychological disorder, or another abnormal condition which
has some unity within itself. We will use the term syndrome for technological cases either to
characterize some psychological disorder based upon an intrinsic or other unity. For example, a
multiplicity of unfortunately coinciding factors can lead to a catastrophe. Thus, for this particular
catastrophe, the combination of these factors is a syndrome.

Thus, our approach is pursuing two major goals. First, our intention is to solve the
unsolved yet a fairly complicated problem of data mining and interpretation. This is a central
problem of intelligence functioning: how knowledge can be extracted from raw data via
visualization. Solving this problem would require analysis of the real world situations and
constructing their models by effectively combining formal, verbal and even non-verbalized models
of analyzed knowledge. It turns out that visualization can help the human decision maker to
associate these diversified models and to formalize the new knowledge for the subsequent use in
both manned and unmanned intelligent systems.

To accomplish this goal a human-computer dialog has to be constructed at each step of
visualization.  This dialog is aimed into restoration and analysis of the hierarchy of features and
descriptions for states, situations, and scenes. It should provide for fast and accurate discrimination,
description and understanding of known and new situation and their reasons. A visual-verbal
language is created as a part of this dialog for each case of analysis individually. This approach
provides effective selection of new models for discovered singularities, observed changes of
situation, detected structures, etc.

An effective interpretation of visual-verbal results in terms of data properties and known
models is the result of this approach. Although the human participant is a must, and there is no
automated procedures to rely upon (as follows from its goals), a number of important advantages
can be registered in comparison with automated systems neural networks, pattern recognition, etc.
To get the good interpretation we use the simple data mapping into pictures and the human natural
“gestalt-skills” for determining entities in these pictures.

Principles of the Human-Computer Dialog for Picture Analysis. The following main
components of our dialog realization distinguish our approach from others by more effective use of
human cognition:

1. Constructing holistic images of exhaustively represented data about situation. If the
number of variables in a situation is more than 20-30, the matrix N*M is to be analyzed where each
row displays a time series of one variables or each cell represents a current value of separate
variables or others. A variable value is mapped into color-brightness. The ability to simultaneously
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represent more than 1000*1000 numbers and to see some “general image” of situation is considered
to be an advantage of our realization. This starting image allows for understanding a holistic
structure of the situation, for detection some of the available skeletons, and for mapping its different
properties into levels of some hierarchical organization that will direct the subsequent informative
feature search.

2 Combinatorial Searching in the Matrix by permutations of rows, columns and cells. For each
permutation the following is performed: sharpening the edges where required, smoothing where
possible, value-to-color mapping adjustment where beneficial, etc. to get more informative, more
interpretable image or at least to improve of its quality.

3. Mapping from matrix to entities: individual patches, group patches, clusters of groups.
Informative variables and features found as a result of matrices permutation can be visualized by
grouping the elementary units of image together. Thus, only tens of variables will be displayed at
the levels of lower resolution but with complete mapping of their relationships within the image.
This allows to determine shapes and more general forms that are more effective for visual analysis
than color variation in the primary high resolution crowd of elementary patches. The dialog with
generalized levels consists of a searching group variables and relationships among them.

4. Selecting appropriate criteria of decisions. It is important to underline that if no pior knowledge
and/or hypotheses exist, then forming a syndrome is done based upon human gestalt skills and
experiences.  If there is some knowledge of situation and its evaluation criteria, the process of will
synthesize this knowledge with the gestalt intuitions.

Pattern Analysis by Human Vision: Can It Be Automated? Human vision has an ability
to quickly and efficiently compare several images in parallel with hundreds of local attributes and
features related to the shapes, textures, colors, or brightness of the images. A standalone spot on a
picture or a spot cluster has certain boundaries shapes which can be segmented using simple local
features such as “straight line”, “concave”, “convex”, “angle”, “hole”, etc. These features have
attributes as “sizes”, “orientation”, “symmetries”, etc. and are connected by means “upper-lower”,
“left-right”,  “inside-outside” adjacency. Local features are visually unified into more complicated
shapes as “wave”, ”leaf”, ”a face profile” and others associated with real world objects and also
have above mentioned and more complicated attributes.

This process of feature generalization continues up to holistic image of a spot including
also its integral features as “complexity”, ”symmetries”, “elongations” besides usual sizes,
orientations, and position on the picture and others. In addition, the color and textural properties can
be described. These attributes and features are then organized into a multilevel (multiresolutional)
hierarchy that can be partially verbalized, or at least, tagged with symbols. If a picture contains
many different separate shapes, such hierarchy can be constructed for these shapes clusters and
clusters groups up to all picture. In addition, the combinatorial and statistical features could be
visually detected and estimated. Vision rapidly moves through this hierarchy, searching for more
details or generalizing the attributes allows for the simultaneous examination of many facets of the
image by means of a variety of attributes and features.

Automated Description of Visual Patterns. Combinations of disjunctions and
conjunctions of features Qi and their attributes Ai can be applied for formalizing human
representation of patterns. So called conjunctive normal form (CNF) describes some pattern with
variation of features attributes, e.g. [“middle size”[ Qa AND Qb [which is “symmetrical” around
axis Ac] AND Qk [known to be “small concave” and located in Ai (k) (e.g. position)]. Disjunctive
normal forms (DNF = CNF1  OR (Qg v Ak) OR CNFN) from separate features or complicated
patterns describe picture classes with supplemental patterns. These descriptions are invariant for
global rotations, shifts and projective transformations of whole shapes as well as their parts (with
some limits). Similar formal tools can be applied with the purpose to formalize many other
elements of the human-computer dialog. The transfer of knowledge from a human to a computer
can be performed by using a subsystem of learning.

The following components of our research should be outlined:



3

2. Analysis of theoretical and experimental fundamentals that suggests that  automated
visualization is efficient in discovering entities, syndromes, and singularities.

Phase 1. Development of Automated Visualization System for Decision Making.
Usually data visualization is a human-computer dialog with the following general structure :
Stage 1. Entering data into the system and their consecutive processing in subsystems 1-4

Subsystem 1. Data gathering, transformation, filtration.
Subsystem 2. Mapping Data into visual paradigm, e.g. pictures.

Subsystem 3. Computer supported human visual analysis of the visualized data: features selection
and transformation of situations into a visual relational map.
Subsystem 4. Comparison with a priori knowledge related to the features and the multi-feature
formations and search of new ones.
Stage 2. Change of the chosen set of variables and parameters for the analysis and  repetition of the
cycle 0f consecutive running of Subsystems 1-4.
Stage 3. Estimation of results, hypothesizing entities (syndromes), testing it through Subsystems 1-4
again, formalization and decision-making.
These three stages are run presently as a human-computer dialog that can have cycles between these
stages in any order assigned by a human. We intend to automate this process by equipping the
human-computer dialog processes by learning subsystem.

The strategy and the techniques of implementing the subsystem of learning and subsequent
conducting the interpretation of results will be determined by the following factors:
- goals are pursued within a particular domain and assignment
- limitations of combining human and computer capabilities
- available algorithms of generalization and instantiation

- metrics accepted for evaluating the performance and intelligence of the system.

Phase 2. Application of Automated Visualization System for evaluating performance and
Intelligence of Intelligent Systems.

In this case, the result of learning from the human during the human-computer dialog will
be used for both: a) automatic analysis of data and  b) for evaluating the performance and
intelligence of intelligent systems.

Assume, an intelligent computer vision system has performed image processing. As a result of this,
a particular image underwent a multiple generalization and the results of this are presented as the
result of image analysis and interpretation. Let us consider another case: an intelligent system has
planned a motion trajectory for an unmanned vehicle. In order to evaluate the intelligence of these
systems, their problem solutions are presented to the automated system of visualization. The
structure of the image and the structure of the motion trajectory are visualized and the prospective
syndromes are obtained. The results of visualization are compared with the results of processing by
the system undergoing testing. This comparison serves as the estimate of performance and
intelligence.

Visualization can be used not for states but for the state-space trajectories. It seems
natural to expand the process of visualization from evaluation of states and situations to evaluation
of state space trajectories as a whole.  This would allow for comparison of different system
behaviors by means of visualization of appropriate data. The results of visualization in this case are
not the images, or pictures but rather movies. There is plenty of evidence that the gestalt abilities
can be applied not only to static images but also to their consecutive strings that represent
processes. Finding a temporal unity of a process is the problem that has never be proposed before as
a problem for the system of automatic visualization.

Intelligence is defined as a faculty of a system that increases the probability of successful
functioning in a variety of problem solving situations and under uncertainty of the conditions of the
environment.
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When systems function, the results of their functioning reflect not only changes of the environments
and the goals assigned but also the results of their control system generating decisions and shaping
processes. The consistency of control system functioning will be reflected in a temporal gestalt of
processes that are generated as a result of control. It is our hypothesis that one can judge the control
system by observing the output and not only measuring how close it is to the output specifications
but also how satisfactorily the system responds to all changes. Since, the construction of a metric
that evaluates responses to all changes is a problematic one (H-infinity is one of the efforts) and
since the combination of uncertain circumstances has unlimited number of possible combinations,
we assume that using the natural ability of human vision to register and recognize singularities of
external images, the ability to distinguish differences in response can be detected via visualization.

3. Existing Experience of Using Visualization for the Purposes of Recognizing
        Singularities in Functioning Systems Confirms Our Hypotheses.

Our experiences in visualization system development for human decision making support has
shown that appropriate data visualization can :
 - drastically enhance efficiency in comparing different approaches of intelligence,
- specify the most effective field of each approach application and combine many of them to built
an
   intelligent system for wide diversity of environment variations and control tasks ( or
whatsoever…),
 - extend this system capabilities for some set of important but uncertain (unpredictable) situations
by means their holistic visualization and recognition in real time.

Gas-turbine engine diagnostics in airplanes and search for the cardiology diagnostic syndrome
demonstrate capabilities of visualization techniques (see Figure 1 and 2). Analysis of existing
experimental data  allowing to expect that the proposed method of intelligence evaluation can be
successful. Pictorial visualization has allowed to analyze the transition modes of engines and
temporal processes of human heart functioning. As a result, the effect of much earlier symptoms of
many malfunctions in the transition modes of operation were discovered to be different from the
static modes, and more reliability of conclusions was achieved.

Interpretation of the successful use of visualization. The following factors were taken in account:
-What was special in the way we have arranged the process of visualization
-What does it suggest for the future organization of visualization
-The “Hypothesis of Visualization” that we have arrived at
-Introduction of the concepts: temporal gestalt, dynamic syndrome, visualization of transition
        modes.
The recommended use of visualization for intelligence testing include:

-The specifics of intelligence testing
-The similarities of the case of intelligence testing and examples
-Restatement of the Hypothesis of visualization for the case of intelligence evaluation.
- How it will be applied for the cases of

• planner/controller for industrial crane
• autonomous unmanned vehicle
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